REFERENCES

1. Rees WE. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization 1992;4:121-130.

2. Wackernagel M, Rees W. Our ecological footprint: reducing human impact on the earth. Available from: http://www.newsociety.com [Last accessed on 15 Apr 2022].

3. Collins A, Flynn A. The ecological footprint: New developments in policy and practice. Science and Public Policy 2016;43:725-7.

4. Costanza R. The dynamics of the ecological footprint concept. Ecological Economics 2000;32:341-5. Available from: https://www.academia.edu/download/30561355/costanza_20ecofootprint.pdf [Last accessed on 15 Apr 2022].

5. Meadows DH, Meadows DL, Randers J, Behrens WW. The limits to growth: a report for the club of Rome’s project on the predicament of mankind. Available from: http://www.donellameadows.org/wp-content/userfiles/Limits-to-Growth-digital-scan-version.pdf [Last accessed on 15 Apr 2022].

6. Allan RP, Hawkins E, Bellouin N, Collins B. IPCC, 2021: summary for policymakers. Available from: https://centaur.reading.ac.uk/101317/ [Last accessed on 15 Apr 2022].

7. Iyer G, Ledna C, Clarke L, et al. Measuring progress from nationally determined contributions to mid-century strategies. Nature Clim Change 2017;7:871-4.

8. Haberl H, Wiedenhofer D, Virág D, Kalt G, Plank B et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ Res Lett 2020;15:065003. Available from: https://iopscience.iop.org/article/10.1088/1748-9326/ab842a/meta.

9. Owusu-Sekyere E, Mahlathi Y, Jordaan H. Understanding South African consumers’ preferences and market potential for products with low water and carbon footprints. Agrekon 2019;58:354-68. Available from: https://journals.co.za/doi/abs/10.1080/03031853.2019.1589544

10. Yu J, Yang T, Ding T, Zhou K. “New normal” characteristics show in China’s energy footprints and carbon footprints. Sci Total Environ 2021;785:147210.

11. Pasiecznik N, Savenije H. Zero Deforestation: a commitment to change. Available from: https://library.wur.nl/WebQuery/wurpubs/fulltext/417718 [Last accessed on 15 Apr 2022].

13. Carbon Footprint. Scope of this journal. Available from: https://oaepublish.com/cf/pages/view/aims_and_scope [Last accessed on 15 Apr 2022].

14. Fox NJ. Boundary objects, social meanings and the success of new technologies. Sociology 2011;45:70-85.

15. Clark WC, Tomich TP, van Noordwij M, Guston D, Catacutan DC et al. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR). Proc Natl Acad Sci U S A 2016; 113:4615-22.

16. Le Quéré C, Rödenbeck C, Buitenhuis ET, et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science 2007;316:1735-8.

17. Hubau W, Lewis SL, Phillips OL, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020;579:80-7.

18. Friedlingstein P, O’sullivan M, Jones MW, et al. Global carbon budget 2020. Earth System Science Data 2020;12:3269-340. Available from: https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.html [Last accessed on 15 Apr 2022]

19. Smith P, Clark H, Dong H, et al. Agriculture, forestry and other land use (AFOLU). Available from: http://pure.iiasa.ac.at/11115 [Last accessed on 15 Apr 2022].

20. Malik A, Lan J. The role of outsourcing in driving global carbon emissions. Economic Systems Research 2016;28:168-82.

21. Meyfroidt P, Rudel TK, Lambin EF. Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci U S A 2010;107:20917-22.

22. Minang PA, van Noordwijk M, Meyfroidt P, Agus F, Dewi S. Emissions embodied in trade (EET) and land use in tropical forest margins. Available from: http://www.asb.cgiar.org/PDFwebdocs/PB17_final.pdf [Last accessed on 15 Apr 2022].

23. Henders S, Persson UM, Kastner T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Available from: https://iopscience.iop.org/article/10.1088/1748-9326/10/12/125012/pdf [Last accessed on 15 Apr 2022].

24. Pendrill F, Persson UM, Godar J, et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change 2019;56:1-10.

25. Laurent A, Olsen SI, Hauschild MZ. Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 2012;46:4100-8.

26. Alvarez S, Carballo-penela A, Mateo-mantecón I, Rubio A. Strengths-weaknesses-opportunities-threats analysis of carbon footprint indicator and derived recommendations. Journal of Cleaner Production 2016;121:238-47.

27. van Noordwijk M, Dewi S, Minang PA. Minimizing the footprint of our food by reducing emissions from all land uses. Available from: https://www.worldagroforestry.org/sites/default/files/Publications/PDFS/PB16139.pdf [Last accessed on 15 Apr 2022].

28. Seixas J, Ferreira F. Carbon economy and carbon footprint. Available from: https://link.springer.com/chapter/10.1007/978-3-030-58315-6_1 [Last accessed on 15 Apr 2022].

29. Ivanova D, Wood R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob Sustain 2020:3.

30. Dubois G, Sovacool B, Aall C, et al. It starts at home? Energy Research & Social Science 2019;52:144-58.

31. Gössling S, Humpe A. The global scale, distribution and growth of aviation: Implications for climate change. Global Environmental Change 2020;65:102194.

32. Ng R, Yeo Z, Tan HX, Song B. Carbon footprint of recycled products: a case study of recycled wood waste in Singapore. Available from: https://link.springer.com/chapter/10.1007/978-981-4585-75-0_7 [Last accessed on 15 Apr 2022].

33. Niamir L, Ivanova O, Filatova T, Voinov A, Bressers H. Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain. Energy Research & Social Science 2020;62:101356.

34. Ivanova D, Barrett J, Wiedenhofer D, Macura B, Callaghan M, Creutzig F. Quantifying the potential for climate change mitigation of consumption options. Environ Res Lett 2020;15:093001.

35. Colglazier W. SUSTAINABILITY. Sustainable development agenda: 2030. Science 2015;349:1048-50.

36. van Noordwijk M, Duguma LA, Dewi S, et al. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? Current Opinion in Environmental Sustainability 2018;34:33-42.

37. Barbier EB, Burgess JC. Sustainable development goal indicators: Analyzing trade-offs and complementarities. World Development 2019;122:295-305.

38. Rockström J, Steffen W, Noone K, Persson Å, et al. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 2009;14:33.

39. Biermann F, Kim RE. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a “safe operating space” for humanity. Annual Review of Environment and Resources 2020;45:497-521.

40. Khasanah N, van Noordwijk M, Slingerland M, et al. Oil palm agroforestry can achieve economic and environmental gains as indicated by multifunctional land equivalent ratios. Front Sustain Food Syst 2020;3:122.

41. Sagar AD, Najam A. The human development index: a critical review. Ecological Economics 1998;25:249-64.

42. Wilson EO Half-earth: our planet’s fight for life. Available from: http://eqlt.org/wp-content/uploads/2016/10/Spring-newsletter-2017-web.pdf [Last accessed on 15 Apr 2022].

43. Dinerstein E, Olson D, Joshi A, et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 2017;67:534-45.

44. Noordwijk M. Agroforestry-based ecosystem services: reconciling values of humans and nature in sustainable development. Land 2021;10:699.

45. Meyfroidt P, Vu TP, Hoang VA. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the central highlands of Vietnam. Global Environmental Change 2013;23:1187-98.

46. Bayrak M, Marafa L. Livelihood implications and perceptions of large scale investment in natural resources for conservation and carbon sequestration: empirical evidence from REDD+ in Vietnam. Sustainability 2017;9:1802.

47. Rockström J, Williams J, Daily G, et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017;46:4-17.

48. Noordwijk M, Brussaard L. Minimizing the ecological footprint of food: closing yield and efficiency gaps simultaneously? Current Opinion in Environmental Sustainability 2014;8:62-70.

49. Struik PC, Kuyper TW. Sustainable intensification in agriculture: the richer shade of green. A review. Available from: https://link.springer.com/article/10.1007/s13593-017-0445-7 [Last accessed on 15 Apr 2022].

50. Noordwijk M, Khasanah N, Dewi S. Can intensification reduce emission intensity of biofuel through optimized fertilizer use? GCB Bioenergy 2017;9:940-52.

51. Davis SC, Boddey RM, Alves BJR, et al. Management swing potential for bioenergy crops. GCB Bioenergy 2013;5:623-38.

52. Hoekstra AY, Mekonnen MM. The water footprint of humanity. Proc Natl Acad Sci U S A 2012;109:3232-7.

53. Creed IF, van Noordwijk M. Forest and water on a changing planet: vulnerability, adaptation and governance opportunities. Available from: https://agris.fao.org/agris-search/search.do?recordID=XF2018002118 [Last accessed on 15 Apr 2022].

54. van Noordwijk M, van Oel A, Muthuri CW, et al. Mimicking nature to reduce agricultural impact on water cycles: a set of mimetrics. Available from: https://journals.sagepub.com/doi/full/10.1177/00307270211073813 [Last accessed on 15 Apr 2022].

55. Girvan A. Carbon footprints as cultural-ecological metaphors. Available from: https://www.taylorfrancis.com/books/mono/10.4324/9781315621005/carbon-footprints-cultural%E2%80%93ecological-metaphors-anita-girvan [Last accessed on 15 Apr 2022].

56. Hertwich EG, Peters GP. Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 2009;43:6414-20.

57. Wang W, Lin JY, Cui SH, Lin T. An overview of carbon footprint analysis. Available from: http://www.cui-lab.com/qfy-content/uploads/2016/02/e79b86cf8c1c1daf7ad4a4a8121a1db6.pdf [Last accessed on 15 Apr 2022].

58. Meadows DH. Leverage points: places to intervene in a system. Available from: http://drbalcom.pbworks.com/w/file/fetch/35173014/Leverage_Points.pdf [Last accessed on 15 Apr 2022].

59. Ostrom E. Governing the commons: The evolution of institutions for collective action. Available from: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1848&context=nrj [Last accessed on 15 Apr 2022].

60. Kooiman J. Exploring the Concept of Governability. Journal of Comparative Policy Analysis: Research and Practice 2008;10:171-90.

61. Thaler RH, Ganser LJ. Misbehaving: the making of behavioral economics. Available from: https://www.interowa.com/support/sites/default/files/anwendungstechnik/lastenheft/pdf-misbehaving-the-making-of-behavioral-economics-richard-thaler-pdf-download-free-book-ba2a7f4.pdf [Last accessed on 15 Apr 2022].

62. Hofstede GJ, Frantz C, Hoey J, Scholz G, Schröder T. Artificial sociality manifesto. Available from: https://rofasss.org/2021/04/08/artsocmanif [Last accessed on 15 Apr 2022].

63. van Noordwijk M. Theories of place, change and induced change for tree-crop-based agroforestry. Available from: https://cgspace.cgiar.org/handle/10568/115511 [Last accessed on 15 Apr 2022].

64. Ryan RM, Deci EL. On happiness and human potentials: a review of research on hedonic and eudaimonic well-being. Annu Rev Psychol 2001;52:141-66.

65. Deci EL, Ryan RM. Hedonia, eudaimonia, and well-being: an introduction. J Happiness Stud 2008;9:1-11.

66. van Noordwijk M. Agroforestry as part of climate change response. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/200/1/012002/pdf [Last accessed on 15 Apr 2022].

67. Sayer J, Sunderland T, Ghazoul J, et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U S A 2013;110:8349-56.

68. Minang PA, van Noordwijk M, Freeman OE, et al. Climate-smart landscapes: multifunctionality in practice. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=rii-BQAAQBAJ&oi=fnd&pg=PR12&dq=%C2%A0Climate-smart+landscapes:+multifunctionality+in+practice.&ots=TduM1praen&sig=u1dKItPSfFWUnk8TCoBqYhGfiP4 [Last accessed on 15 Apr 2022].

69. Freeman OE, Duguma LA, Minang PA. Operationalizing the integrated landscape approach in practice. Available from: http://www.jstor.org/stable/26269763 [Last accessed on 15 Apr 2022].

70. Riggs RA, Langston JD, Nerfa L, et al. Common ground: integrated landscape approaches and small and medium forest enterprises for vibrant forest landscapes. Sustain Sci 2021;16:2013-26.

71. Langston JD, McIntyre R, Falconer K, Sunderland T, van Noordwijk M, Boedhihartono AK. Discourses mapped by Q-method show governance constraints motivate landscape approaches in Indonesia. PLoS One 2019;14:e0211221.

72. Vita G, Ivanova D, Dumitru A, et al. Happier with less? Energy Research & Social Science 2020;60:101329.[PMID:26941687 DOI:10.3389/fpsyg.2016.00234 PMCID:PMC4763027] Caution!.

73. Saujot M, Le Gallic T, Waisman H. Lifestyle changes in mitigation pathways: policy and scientific insights. Available from: https://iopscience.iop.org/article/10.1088/1748-9326/abd0a9/meta [Last accessed on 15 Apr 2022].

74. Gossen M, Kropfeld MI. “Choose nature. Buy less.” Exploring sufficiency-oriented marketing and consumption practices in the outdoor industry. Sustainable Production and Consumption 2022;30:720-36.

75. Wiese-rozanov L. Soil organic carbon commitments under three Rio Conventions: Opportunities for integration. Soil Security 2022;6:100052.

76. Muthee K, Duguma L, Wainaina P, Minang P, Nzyoka J. A Review of global policy mechanisms designed for tropical forests conservation and climate risks management. Front For Glob Change 2022;4:748170.

77. Abhilash PC. Restoring the unrestored: strategies for restoring global land during the UN decade on ecosystem restoration (UN-DER). Land 2021;10:201.

78. van Noordwijk M, Gitz V, Minang PA, et al. People-centric nature-based land restoration through agroforestry: a typology. Land 2020;9:251.

79. Wicke B, Verweij P, van Meijl H, van Vuuren DP, Faaij AP. Indirect land use change: review of existing models and strategies for mitigation. Biofuels 2014;3:87-100.

80. Elobeid A, Moreira MM, Zanetti de Lima C, Carriquiry M, Harfuch L. Implications of biofuel production on direct and indirect land use change: evidence from Brazil. Available from: http://www.iecon.ccee.edu.uy/implication-of-biofuel-production-on-direct-and-indirect-land-use-change-evidence-from-brazil/publication/696/en/ [Last accessed on 15 Apr 2022].

81. Khasanah NM. Oil palm (Elaeis guineensis) production in Indonesia: carbon footprint and diversification options. Available from: https://library.wur.nl/WebQuery/wurpubs/fulltext/467425 [Last accessed on 15 Apr 2022].

82. Meijaard E, Abrams J, Juffe-Bignoli D, Voigt M, Sheil D. Coconut oil, conservation and the conscientious consumer. Curr Biol 2020;30:R757-8.

83. van Noordwijk M. Coconut bashing. 2020. Available from: https://www.worldagroforestry.org/blog/2020/07/15/coconut-bashing [Last accessed on 15 Apr 2022].

84. Perkins O, Millington JDA. The importance of agricultural yield elasticity for indirect land use change: a Bayesian network analysis for robust uncertainty quantification. Journal of Land Use Science 2020;15:509-31.

85. Azhar B, Nobilly F, Lechner AM, et al. Mitigating the risks of indirect land use change (ILUC) related deforestation from industrial palm oil expansion by sharing land access with displaced crop and cattle farmers. Land Use Policy 2021;107:105498.

86. Trabucco A, Zomer RJ, Bossio DA, van Straaten O, Verchot LV. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agriculture, Ecosystems & Environment 2008;126:81-97.

87. Hassan ST, Baloch MA, Mahmood N, Zhang J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustainable Cities and Society 2019;47:101516.

88. Carter S, Arts B, Giller KE, et al. Climate-smart land use requires local solutions, transdisciplinary research, policy coherence and transparency. Carbon Management 2018;9:291-301.

89. Amaruzaman S, Bardsley DK, Stringer R. Reflexive policies and the complex socio-ecological systems of the upland landscapes in Indonesia. Agric Hum Values ; doi: 10.1007/s10460-021-10281-3.

90. van Noordwijk, M, Catacutan DC, Duguma L, et al. Agroforestry Matches the Evolving Climate Change Mitigation and Adaptation Agenda in Asia and Africa. In: JC Dagar, SR Gupta, GW Sileshi (Eds.) Agro-forestry for Sustainable Intensification of Agriculture in Asia and Africa. Springer, Berlin. 2022b in press https://link.springer.com/book/10.1007/978-981-15-4136-0.

91. De Sy V, Herold M, Brockhaus M, Di Gregorio M, Ochieng RM. Transforming REDD+: Lessons and new directions. Available from: https://helda.helsinki.fi/bitstream/handle/10138/297080/BAngelsen1801.pdf?sequence=1 [Last accessed on 15 Apr 2022].

92. Gasparatos A, Doll CN, Esteban M, Ahmed A, Olang TA. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews 2017;70:161-84.

93. McCollum DL, Echeverri LG, Busch S, et al. Connecting the sustainable development goals by their energy inter-linkages. Environ Res Lett 2018;13:033006.

94. Pörtner HO, Scholes RJ, Agard J, et al. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. Available from: https://research-repository.uwa.edu.au/en/publications/ipbes-ipcc-co-sponsored-workshop-report-on-biodiversity-and-clima [Last accessed on 15 Apr 2022].

95. Bustamante M, Robledo-Abad C, Harper R, et al. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. Glob Chang Biol 2014;20:3270-90.

97. Noordwijk M. Integrated natural resource management as pathway to poverty reduction: Innovating practices, institutions and policies. Agricultural Systems 2019;172:60-71.

98. Mithöfer D, van Noordwijk M, Leimona B, Cerutti PO. Certify and shift blame, or resolve issues? International Journal of Biodiversity Science, Ecosystem Services & Management 2017;13:72-85.

99. Mithöfer D, Roshetko JM, Donovan JA, et al. Unpacking “sustainable” cocoa: do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru? International Journal of Biodiversity Science, Ecosystem Services & Management 2017;13:444-69.

100. Leimona B, van Noordwijk M, Mithöfer D, Cerutti P. Environmentally and socially responsible global production and trade of timber and tree crop commodities: certification as a transient issue-attention cycle response to ecological and social issues. International Journal of Biodiversity Science, Ecosystem Services & Management 2017;13:497-502.

101. Leimona B, van Noordwijk M, Kennedy S, Namirembe S, Minang PA. Synthesis and lessons on ecological, economic, social and governance propositions. Available from: https://www.worldagroforestry.org/sites/default/files/chapters/Ch38%20Synthesis%20and%20lessons_ebook_511-538.pdf [Last accessed on 15 Apr 2022]

102. Bernard F, van Noordwijk M, Luedeling E, Villamor GB, Sileshi GW, Namirembe S. Social actors and unsustainability of agriculture. Current Opinion in Environmental Sustainability 2014;6:155-61.

103. Namirembe S, Leimona B, van Noordwijk M, Minang PA. Co-investment in ecosystem services: global lessons from payment and incentive schemes. Available from: https://www.worldagroforestry.org/sites/default/files/u884/Ch1_IntroCoinvest_ebook.pdf [Last accessed on 15 Apr 2022].

104. Noordwijk M, Agus F, Dewi S, Purnomo H. Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams. Mitig Adapt Strateg Glob Change 2014;19:677-98.

105. Sari R, Saputra D, Hairiah K, Rozendaal D, Roshetko J, van Noordwijk M. Gendered Species Preferences Link Tree Diversity and Carbon Stocks in Cacao Agroforest in Southeast Sulawesi, Indonesia. Land 2020;9:108.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/