REFERENCES

1. Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell 2023;186:1708-28.

2. Nardin S, Mora E, Varughese FM, et al. Breast cancer survivorship, quality of life, and late toxicities. Front Oncol 2020;10:864.

3. Al-Ghazal SK, Fallowfield L, Blamey RW. Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction. Eur J Cancer 2000;36:1938-43.

4. Yueh JH, Slavin SA, Adesiyun T, et al. Patient satisfaction in postmastectomy breast reconstruction: a comparative evaluation of DIEP, TRAM, latissimus flap, and implant techniques. Plast Reconstr Surg 2010;125:1585-95.

5. Yun JH, Diaz R, Orman AG. Breast reconstruction and radiation therapy. Cancer Control 2018;25:1073274818795489.

6. Pien I, Caccavale S, Cheung MC, et al. Evolving trends in autologous breast reconstruction: is the deep inferior epigastric artery perforator flap taking over? Ann Plast Surg 2016;76:489-93.

7. Wade RG, Razzano S, Sassoon EM, Haywood RM, Ali RS, Figus A. Complications in DIEP flap breast reconstruction after mastectomy for breast cancer: a prospective cohort study comparing unilateral versus bilateral reconstructions. Ann Surg Oncol 2017;24:1465-74.

8. Knoedler S, Kauke-Navarro M, Knoedler L, et al. The significance of timing in breast reconstruction after mastectomy: an ACS-NSQIP analysis. J Plast Reconstr Aesthet Surg 2024;89:40-50.

9. DeFazio MV, Arribas EM, Ahmad FI, et al. Application of three-dimensional printed vascular modeling as a perioperative guide to perforator mapping and pedicle dissection during abdominal flap harvest for breast reconstruction. J Reconstr Microsurg 2020;36:325-38.

10. Ogunleye AA, Deptula PL, Inchauste SM, et al. The utility of three-dimensional models in complex microsurgical reconstruction. Arch Plast Surg 2020;47:428-34.

11. Chae MP, Hunter-Smith DJ, Chung RD, Smith JA, Rozen WM. 3D-printed, patient-specific DIEP flap templates for preoperative planning in breast reconstruction: a prospective case series. Gland Surg 2021;10:2192-9.

12. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP flap breast reconstruction. Plast Reconstr Surg Glob Open 2023;11:e5282.

13. Cevik J, Seth I, Rozen WM. Transforming breast reconstruction: the pioneering role of artificial intelligence in preoperative planning. Gland Surg 2023;12:1271-5.

14. Jacobson NM, Carerra E, Treat A, McDonnell M, Mathes D, Kaoutzanis C. Hybrid modeling techniques for 3D printed deep inferior epigastric perforator flap models. 3D Print Med 2023;9:26.

15. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2016;69:578-80.

16. Cholok DJ, Fischer MJ, Leuze CW, Januszyk M, Daniel BL, Momeni A. Spatial fidelity of microvascular perforating vessels as perceived by augmented reality virtual projections. Plast Reconstr Surg 2024;153:524-34.

17. Hummelink S, Hoogeveen YL, Schultze Kool LJ, Ulrich DJO. A new and innovative method of preoperatively planning and projecting vascular anatomy in DIEP flap breast reconstruction: a randomized controlled trial. Plast Reconstr Surg 2019;143:1151e-8e.

18. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast 2020;50:19-24.

19. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction model for flap failure in microvascular breast reconstruction. Ann Surg Oncol 2020;27:3466-75.

20. Khan MTA, Won BW, Baumgardner K, et al. Literature review: robotic-assisted harvest of deep inferior epigastric flap for breast reconstruction. Ann Plast Surg 2022;89:703-8.

21. Innocenti M, Malzone G, Menichini G. First-in-human free flap tissue reconstruction using a dedicated microsurgical robotic platform. Plast Reconstr Surg 2023;151:1078-82.

22. Ghandourah HSH, Schols RM, Wolfs JAGN, Altaweel F, van Mulken TJM. Robotic microsurgery in plastic and reconstructive surgery: a literature review. Surg Innov 2023;30:607-14.

23. Bhullar H, Hunter-Smith DJ, Rozen WM. Fat necrosis after DIEP flap breast reconstruction: a review of perfusion-related causes. Aesthetic Plast Surg 2020;44:1454-61.

24. Pruimboom T, van Kuijk SMJ, Qiu SS, et al. Optimizing indocyanine green fluorescence angiography in reconstructive flap surgery: a systematic review and ex vivo experiments. Surg Innov 2020;27:103-19.

25. Pruimboom T, Lindelauf AAMA, Felli E, et al. Perioperative hyperspectral imaging to assess mastectomy skin flap and DIEP flap perfusion in immediate autologous breast reconstruction: a pilot study. Diagnostics 2022;12:184.

26. Proulx ST, Luciani P, Derzsi S, et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 2010;70:7053-62.

27. Prabhu AS, Carbonell A, Hope W, et al. Robotic inguinal vs transabdominal laparoscopic inguinal hernia repair: the RIVAL randomized clinical trial. JAMA Surg 2020;155:380-7.

28. Brassetti A, Ragusa A, Tedesco F, et al. Robotic surgery in urology: history from PROBOT® to HUGOTM. Sensors 2023;23:7104.

29. Aitzetmüller MM, Klietz ML, Dermietzel AF, Hirsch T, Kückelhaus M. Robotic-assisted microsurgery and its future in plastic surgery. J Clin Med 2022;11:3378.

30. Roy N, Alessandro CJ, Ibelli TJ, et al. The expanding utility of robotic-assisted flap harvest in autologous breast reconstruction: a systematic review. J Clin Med 2023;12:4951.

31. Daar DA, Anzai LM, Vranis NM, et al. Robotic deep inferior epigastric perforator flap harvest in breast reconstruction. Microsurgery 2022;42:319-25.

32. Wittesaele W, Vandevoort M. Implementing the robotic deep inferior epigastric perforator flap in daily practice: a series of 10 cases. J Plast Reconstr Aesthet Surg 2022;75:2577-83.

33. Besmens IS, Politikou O, Giovanoli P, Calcagni M, Lindenblatt N. Robotic microsurgery in extremity reconstruction - experience with a novel robotic system. Surg Innov 2024;31:42-7.

34. Wolfs JA, Schols RM, van Mulken TJ. Robotic microvascular and free flap surgery: overview of current robotic applications and introduction of a dedicated robot for microsurgery. In: Nikkhah, D., Rawlins, J., Pafitanis, G. (eds) Core Techniques in Flap Reconstructive Microsurgery. Springer, Cham; 2023.p.77-86.

35. Barbon C, Grünherz L, Uyulmaz S, Giovanoli P, Lindenblatt N. Exploring the learning curve of a new robotic microsurgical system for microsurgery. JPRAS Open 2022;34:126-33.

36. van Mulken TJM, Qiu SS, Jonis Y, et al. First-in-human integrated use of a dedicated microsurgical robot with a 4K 3D exoscope: the future of microsurgery. Life 2023;13:692.

37. Abdelrahman H, El-Menyar A, Peralta R, Al-Thani H. Application of indocyanine green in surgery: a review of current evidence and implementation in trauma patients. World J Gastrointest Surg 2023;15:757-75.

38. Burnier P, Niddam J, Bosc R, Hersant B, Meningaud JP. Indocyanine green applications in plastic surgery: a review of the literature. J Plast Reconstr Aesthet Surg 2017;70:814-27.

39. Bigdeli AK, Gazyakan E, Schmidt VJ, et al. Indocyanine green fluorescence for free-flap perfusion imaging revisited: advanced decision making by virtual perfusion reality in visionsense fusion imaging angiography. Surg Innov 2016;23:249-60.

40. Wu Y, Suo Y, Wang Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol 2022;10:1042546.

41. Van Den Hoven P, Verduijn PS, Van Capelle L, et al. Quantification of near-infrared fluorescence imaging with indocyanine green in free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2022;75:1820-5.

42. Moyer HR, Losken A. Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plast Reconstr Surg 2012;129:1043-8.

43. Phillips BT, Lanier ST, Conkling N, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg 2012;129:778e-88e.

44. Cahill RA, O'Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br J Surg 2021;108:5-9.

45. Poplack SP, Park EY, Ferrara KW. Optical breast imaging: a review of physical principles, technologies, and clinical applications. J Breast Imaging 2023;5:520-37.

46. Oppermann C, Dohrn N, Yikilmaz H, Falk Klein M, Eriksen T, Gögenur I. Continuous organ perfusion monitoring using indocyanine green in a piglet model. Surg Endosc 2023;37:1601-10.

47. Karim S, Qadir A, Farooq U, Shakir M, Laghari AA. Hyperspectral imaging: a review and trends towards medical imaging. Curr Med Imaging 2022;19:417-27.

48. Studier-Fischer A, Seidlitz S, Sellner J, et al. Spectral organ fingerprints for machine learning-based intraoperative tissue classification with hyperspectral imaging in a porcine model. Sci Rep 2022;12:11028.

49. Thiem DGE, Frick RW, Goetze E, Gielisch M, Al-Nawas B, Kämmerer PW. Hyperspectral analysis for perioperative perfusion monitoring-a clinical feasibility study on free and pedicled flaps. Clin Oral Investig 2021;25:933-45.

50. Knoedler S, Hoch CC, Huelsboemer L, et al. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front Surg 2023;10:1130566.

51. Hummelink SLM, Paulus VAA, Wentink EC, Ulrich DJO. Development and evaluation of a remote patient monitoring system in autologous breast reconstruction. Plast Reconstr Surg Glob Open 2022;10:e4008.

52. Khavanin N, Darrach H, Kraenzlin F, Yesantharao PS, Sacks JM. The intra.Ox near-infrared spectrometer measures variations in flap oxygenation that correlate to flap necrosis in a preclinical rodent model. Plast Reconstr Surg 2021;147:1097-104.

53. Largo RD, Selber JC, Garvey PB, et al. Outcome analysis of free flap salvage in outpatients presenting with microvascular compromise. Plast Reconstr Surg 2018;141:20e-7e.

54. Xie R, Zhang Y, Liu Q, Huang X, Liu M. A wireless infrared thermometry device for postoperative flap monitoring: proof of concept in patients. Surg Innov 2023;30:636-9.

55. Oda H, Beker L, Kaizawa Y, et al. A novel technology for free flap monitoring: pilot study of a wireless, biodegradable sensor. J Reconstr Microsurg 2020;36:182-90.

56. Halani SH, Hembd AS, Li X, et al. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J Hand Microsurg 2022;14:10-8.

57. Guye ML, Motamed C, Chemam S, Leymarie N, Suria S, Weil G. Remote peripheral tissue oxygenation does not predict postoperative free flap complications in complex head and neck cancer surgery: a prospective cohort study. Anaesth Crit Care Pain Med 2017;36:27-31.

58. Marks H, Bucknor A, Roussakis E, et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci Adv 2020;6:eabd1061.

59. Khanna AK, Ahuja S, Weller RS, Harwood TN. Postoperative ward monitoring - why and what now? Best Pract Res Clin Anaesthesiol 2019;33:229-45.

60. Papavasiliou T, Ubong S, Khajuria A, Chatzimichail S, Chan JCY. 3D printed chest wall: a tool for advanced microsurgical training simulating depth and limited view. Plast Reconstr Surg Glob Open 2021;9:e3817.

61. Leung R, Shi G. Building your future holographic mentor: can we use mixed reality holograms for visual spatial motor skills acquisition in surgical education? Surg Innov 2024;31:82-91.

62. Favier V, Zemiti N, Caravaca Mora O, et al. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - a first step to create reliable customized simulators. PLoS One 2017;12:e0189486.

63. Lichtenstein JT, Zeller AN, Lemound J, et al. 3D-printed simulation device for orbital surgery. J Surg Educ 2017;74:2-8.

64. Lobb DC, Cottler P, Dart D, Black JS. The use of patient-specific three-dimensional printed surgical models enhances plastic surgery resident education in craniofacial surgery. J Craniofac Surg 2019;30:339-41.

65. Smith DM, Aston SJ, Cutting CB, Oliker A. Applications of virtual reality in aesthetic surgery. Plast Reconstr Surg 2005;116:898-904; discussion 905.

66. Smith DM, Oliker A, Carter CR, Kirov M, McCarthy JG, Cutting CB. A virtual reality atlas of craniofacial anatomy. Plast Reconstr Surg 2007;120:1641-6.

67. Tolsdorff B, Pommert A, Höhne KH, et al. Virtual reality: a new paranasal sinus surgery simulator. Laryngoscope 2010;120:420-6.

68. Runz A, Boccara D, Bertheuil N, Claudot F, Brix M, Simon E. Three-dimensional imaging, an important factor of decision in breast augmentation. Ann Chir Plast Esthet 2018;63:134-9.

69. Lee GK, Moshrefi S, Fuertes V, Veeravagu L, Nazerali R, Lin SJ. What is your reality? Plast Reconstr Surg 2021;147:505-11.

Plastic and Aesthetic Research
ISSN 2349-6150 (Online)   2347-9264 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/