REFERENCES
1. Padovano WM, Dengler J, Patterson MM, et al. Incidence of nerve injury after extremity trauma in the United States. Hand (NY) 2022;17:615-23.
2. Bazarek S, Brown JM. The evolution of nerve transfers for spinal cord injury. Exp Neurol 2020;333:113426.
3. Trejo JL. Advances in the ongoing battle against the consequences of peripheral nerve injuries. Anat Rec (Hoboken) 2018;301:1606-13.
4. Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The Present and future for peripheral nerve regeneration. Orthopedics 2017;40:e141-56.
5. Shimizu M, Matsumine H, Osaki H, et al. Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration. Wound Repair Regen 2018;26:446-55.
6. Di Summa PG, Schiraldi L, Cherubino M, et al. Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats. Anat Rec (Hoboken) 2018;301:1714-21.
7. Carriel V, Garrido-Gómez J, Hernández-Cortés P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 2013;10:026022.
8. Keane GC, Pan D, Roh J, et al. The effects of intraoperative electrical stimulation on regeneration and recovery after nerve isograft repair in a rat model. Hand (NY) 2022;17:540-8.
9. Jo S, Pan D, Halevi AE, et al. Comparing electrical stimulation and tacrolimus (FK506) to enhance treating nerve injuries. Muscle Nerve 2019;60:629-36.
10. Roh J, Schellhardt L, Keane GC, et al. Short-duration, pulsatile, electrical stimulation therapy accelerates axon regeneration and recovery following tibial nerve injury and repair in rats. Plast Reconstr Surg 2022;149:681e-90e.
12. Peters BR, Ha AY, Moore AM, Tung TH. Nerve transfers for femoral nerve palsy: an updated approach and surgical technique. J Neurosurg 2022;136:856-66.
13. Nichols DS, Chim H. Contralateral obturator to femoral nerve branch transfer for multilevel lumbosacral plexus avulsion injury. Plast Reconstr Surg Glob Open 2021;9:e3997.
14. Cao Y, Li Y, Zhang Y, et al. Contralateral obturator nerve transfer for femoral nerve restoration: a case report. Br J Neurosurg 2021;35:35-9.
15. Doi K, Sem SH, Hattori Y, Sakamoto S, Hayashi K, Maruyama A. Contralateral Obturator nerve to femoral nerve transfer for restoration of knee extension after acute flaccid myelitis: a case report. JBJS Case Connect 2019;9:e0073.
16. Lubelski D, Pennington Z, Tuffaha S, Moore A, Belzberg AJ. Sciatic-to-femoral nerve end-to-end coaptation for proximal lower extremity function in patients with acute flaccid myelitis: technical note and review of the literature. Oper Neurosurg (Hagerstown) 2021;21:20-6.
17. Moore AM, Krauss EM, Parikh RP, Franco MJ, Tung TH. Femoral nerve transfers for restoring tibial nerve function: an anatomical study and clinical correlation: a report of 2 cases. J Neurosurg 2018;129:1024-33.
18. Campbell AA, Eckhauser FE, Belzberg A, Campbell JN. Obturator nerve transfer as an option for femoral nerve repair: case report. Neurosurgery 2010;66:375; discussion 375.
19. Tung TH, Chao A, Moore AM. Obturator nerve transfer for femoral nerve reconstruction: anatomic study and clinical application. Plast Reconstr Surg 2012;130:1066-74.
20. Goubier JN, Teboul F, Yeo S. Transfer of two motor branches of the anterior obturator nerve to the motor portion of the femoral nerve: an anatomical feasibility study. Microsurgery 2012;32:463-5.
21. Chen H, Meng D, Xie Z, Yin G, Hou C, Lin H. Transfer of sciatic nerve motor branches in high femoral nerve injury: a cadaver feasibility study and clinical case report. Oper Neurosurg (Hagerstown) 2020;19:E244-50.
22. Zhu L, F Zhang, Yang D, Chen A. The effect of severing a normal S1 nerve root to use for reconstruction of an avulsed contralateral lumbosacral plexus: a pilot study. Bone Joint J 2015;97-B:358-65.
23. Toreih AA, Sallam AA, Ibrahim CM, Maaty AI, Hassan MM. Intercostal, ilioinguinal, and iliohypogastric nerve transfers for lower limb reinnervation after spinal cord injury: an anatomical feasibility and experimental study. J Neurosurg Spine 2018;30:268-78.
24. Menderes G, Vilardo N, Schwab CL, Azodi M. Incidental injury and repair of obturator nerve during laparoscopic pelvic lymphadenectomy. Gynecol Oncol 2016;142:208.
25. Andan C, Bakır MS, Şen S, Aksin Ş. Concurrent primary repair of obturator nerve transection during pelvic lymphadenectomy procedure via laparoscopical approach. Int J Surg Case Rep 2018;53:394-6.
26. Yıkılmaz TN, Öztürk E, Hamidi N, Başar H, Yaman Ö. Management of obturator nevre injury during pelvic lymph node dissection. Turk J Urol 2019;45:S26-9.
27. Spiliopoulos K, Williams Z. Femoral branch to obturator nerve transfer for restoration of thigh adduction following iatrogenic injury. J Neurosurg 2011;114:1529-33.
28. Koshima I, Nanba Y, Tsutsui T, Takahashi Y. Deep peroneal nerve transfer for established plantar sensory loss. J Reconstr Microsurg 2003;19:451-4.
29. Yin G, Chen H, Hou C, Xiao J, Lin H. Obturator nerve transfer to the branch of the tibial nerve innervating the gastrocnemius muscle for the treatment of sacral plexus nerve injury. Neurosurgery 2016;78:546-51.
30. Kihm CA, Camasta CA. Review of drop hallux: assessment and surgical repair. J Foot Ankle Surg 2017;56:103-7.
31. Ferris S, Maciburko SJ. Partial tibial nerve transfer to tibialis anterior for traumatic peroneal nerve palsy. Microsurgery 2017;37:596-602.
32. Nath RK, Somasundaram C. Gait improvements after peroneal or tibial nerve transfer in patients with foot drop: a retrospective study. Eplasty 2017:17.
33. Meng D, Chen H, Lin Y, Lin H, Hou C. Transferring of femoral nerve motor branches for high-level sciatic nerve injury: a cadaver feasibility study. Acta Neurochir (Wien) 2019;161:279-86.
34. Flores LP, Martins RS, Siqueira MG. Clinical results of transferring a motor branch of the tibial nerve to the deep peroneal nerve for treatment of foot drop. Neurosurgery 2013;73:609-15; discussion 615.
35. Kahn LC, Moore AM. Donor activation focused rehabilitation approach: maximizing outcomes after nerve transfers. Hand Clin 2016;32:263-77.
36. Pess G, Lusskin R, Waugh T, Battista A. Femoral neuropathy secondary to pressurized cement in total hip replacement: treatment by decompression and neurolysis. Report of a case. JBJS ;69:623-5.
37. Dehdashtian A, Bratley JV, Svientek SR, et al. Autologous fat grafting for nerve regeneration and neuropathic pain: current state from bench-to-bedside. Regen Med 2020;15:2209-28.
38. Cui L, Jiang J, Wei L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 2008;26:1356-65.
39. Mozafari R, Kyrylenko S, Castro MV, Ferreira RS Jr, Barraviera B, Oliveira ALR. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. J Venom Anim Toxins Incl Trop Dis 2018;24:11.
40. Bioethics PsCo. Monitoring stem cell research: a report of the president’s council on bioethics. President’s council on bioethics; 2004. Available from: https://bioethicsarchive.georgetown.edu/pcbe/reports/stemcell/ [Last accessed on 7 Mar 2023].
41. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.
42. Wang A, Tang Z, Park IH, et al. Induced pluripotent stem cells for neural tissue engineering. Biomaterials 2011;32:5023-32.
43. Huang CW, Huang WC, Qiu X, et al. The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep 2017;7:17401.
44. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011;11:268-77.
45. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of
46. Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS. Study of
47. Zhang J, Liu Y, Chen Y, et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int 2020;2020:8810813.
48. Mathot F, Rbia N, Bishop AT, Hovius SER, Shin AY. Adipose derived mesenchymal stem cells seeded onto a decellularized nerve allograft enhances angiogenesis in a rat sciatic nerve defect model. Microsurgery 2020;40:585-92.
49. Saffari TM, Saffari S, Vyas KS, Mardini S, Shin AY. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen Res 2022;17:2179-84.
50. Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014;8:182.
51. Possover M. Ten-year experience with continuous low-frequency pelvic somatic nerves stimulation for recovery of voluntary walking in people with chronic spinal cord injury: a prospective case series of 29 consecutive patients. Arch Phys Med Rehabil 2021;102:50-7.
52. la Oliva N, Navarro X, Del Valle J. Dexamethasone reduces the foreign body reaction to intraneural electrode implants in the peripheral nerve of the rat. Anat Rec (Hoboken) 2018;301:1722-33.
53. Karagiannis P, Ferris SI. Dual nerve transfer of gracilis and adductor longus nerves in restoration of complete femoral nerve palsy. ANZ J Surg 2018;88:E91-2.
54. Inaba N, Sato K, Suzuki T, et al. Partial obturator nerve transfer for femoral nerve injury: A case report. J Orthop Sci 2018;23:202-4.
55. Meng D, Zhou J, Lin Y, et al. Transfer of obturator nerve for femoral nerve injury: an experiment study in rats. Acta Neurochir (Wien) 2018;160:1385-91.
56. Rastrelli M, Tocco-Tussardi I, Tropea S, Rossi CR, Rizzato S, Vindigni V. Transfer of the anterior branch of the obturator nerve for femoral nerve reconstruction and preservation of motor function: a case report. Int J Surg Case Rep 2018;51:58-61.
57. Graham DJ, Sivakumar BS, Lawson R. Modification of obturator to femoral nerve transfer for femoral nerve palsy. Ann R Coll Surg Engl 2020;102:e70-2.
58. Donaldson EK, Chandler RM, Clark TA, Hayakawa TEJ, Giuffre JL. Reconstruction of quadriceps function using a single functional gracilis muscle transfer with an adductor longus nerve to femoral nerve branch of the rectus femoris nerve transfer. Ann Plast Surg 2022;89:419-30.
59. Agarwal P, Shukla P, Sharma D. Saphenous nerve transfer: a new approach to restore sensation of the sole. J Plast Reconstr Aesthet Surg 2018;71:1704-10.
60. Namazi H, Kiani M, Gholamzadeh S, Dehghanian A, Fatemeh DN. Obturator to tibial nerve transfer via saphenous nerve graft for treatment of sacral plexus root avulsions: a cadaveric study. Orthop Traumatol Surg Res 2020;106:291-5.
61. Montgomery AS, Birch R, Malone A. Sciatic neurostenalgia: caused by total hip arthroplasty, cured by late neurolysis. J Bone Joint Surg Br 2005;87:410-1.
62. Volpi E, Seinera P, Ferrero A, Dompè D. Laparoscopic neurolysis of the pelvic sciatic nerve in a case of catamenial footdrop. J Minim Invasive Gynecol 2005;12:525-7.
63. Possover M, Baekelandt J, Flaskamp C, Li D, Chiantera V. Laparoscopic neurolysis of the sacral plexus and the sciatic nerve for extensive endometriosis of the pelvic wall. Minim Invasive Neurosurg 2007;50:33-6.
65. Kyriacou S, Pastides PS, Singh VK, Jeyaseelan L, Sinisi M, Fox M. Exploration and neurolysis for the treatment of neuropathic pain in patients with a sciatic nerve palsy after total hip replacement. Bone Joint J 2013;95-B:20-2.
66. Maalla R, Youssef M, Sebai M, Essadam H. Peroneal nerve entrapment at the fibular head: outcomes of neurolysis. Orthop Traumatol Surg Res 2013;99:719-722.
67. Aboulfetouh I, Saleh A. Neurolysis for secondary sciatic nerve entrapment: evaluation of surgical feasibility and functional outcome. Acta Neurochir (Wien) 2014;156:1979-86.
68. Andrade C, Barata S, António F, Alho C, Calhaz-Jorge C, Osório F. Laparoscopic neurolysis of deep endometriosis infiltrating left femoral nerve: case report. Surg Technol Int 2015;27:163-168.
69. Ham DH, Chung WC, Jung DU. Effectiveness of endoscopic sciatic nerve decompression for the treatment of deep gluteal syndrome. Hip Pelvis 2018;30:29-36.
70. Ilizaliturri VM Jr, Arriaga R, Villalobos FE, Suarez-Ahedo C. Endoscopic release of the piriformis tendon and sciatic nerve exploration. J Hip Preserv Surg 2018;5:301-6.
71. Broekx S, Weyns F. External neurolysis as a treatment for foot drop secondary to weight loss: a retrospective analysis of 200 cases. Acta Neurochir (Wien) 2018;160:1847-56.
72. Tarabay B, Abdallah Y, Kobaiter-Maarrawi S, Yammine P, Maarrawi J. Outcome and Prognosis of Microsurgical Decompression in Idiopathic Severe Common Fibular Nerve Entrapment: Prospective Clinical Study. World Neurosurg 2019;126:e281-7.
73. Park MS, Jeong SY, Yoon SJ. Endoscopic sciatic nerve decompression after fracture or reconstructive surgery of the acetabulum in comparison with endoscopic treatments in idiopathic deep gluteal syndrome. Clin J Sport Med 2019;29:203-8.
74. Jones I, Novikova LN, Novikov LN, et al. Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury. J Tissue Eng Regen Med 2018;12:e2099-109.
75. Chen X, Ye K, Yu J, et al. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank 2020;21:233-48.
76. Xia B, Chen G, Zou Y, Yang L, Pan J, Lv Y. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery. J Tissue Eng Regen Med 2019;13:625-36.
77. Lv Y, Nan P, Chen G, Sha Y, Xia B, Yang L. In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 2015;37:2497-506.
78. Yokoi T, Uemura T, Takamatsu K, et al. Bioabsorbable nerve conduits coated with induced pluripotent stem cell-derived neurospheres enhance axonal regeneration in sciatic nerve defects in aged mice. J Biomed Mater Res B Appl Biomater 2018;106:1752-8.
79. Pepper JP, Wang TV, Hennes V, Sun SY, Ichida JK. Human induced pluripotent stem cell-derived motor neuron transplant for neuromuscular atrophy in a mouse model of sciatic nerve injury. JAMA Facial Plast Surg 2017;19:197-205.
80. Raoofi A, Sadeghi Y, Piryaei A, et al. Bone marrow mesenchymal stem cell condition medium loaded on pcl nanofibrous scaffold promoted nerve regeneration after sciatic nerve transection in male rats. Neurotox Res 2021;39:1470-86.
81. Zheng Y, Huang C, Liu F, et al. Reactivation of denervated Schwann cells by neurons induced from bone marrow-derived mesenchymal stem cells. Brain Res Bull 2018;139:211-23.
82. Fernandes M, Valente SG, Sabongi RG, et al. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration. Neural Regen Res 2018;13:100-4.
83. Cai S, Tsui YP, Tam KW, et al. Directed differentiation of human bone marrow stromal cells to fate-committed schwann cells. Stem Cell Reports 2017;9:1097-108.
84. Karakol P, Kapi E, Karaöz E, Tunik S, Bozkurt M. Comparison of the effects of intratubal injection of adipose-derived mesenchymal stem cells in a rat sciatic nerve transection: an experimental study. Ann Plast Surg 2022;88:460-6.
85. Soto PA, Vence M, Piñero GM, et al. Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells. Acta Biomater 2021;130:234-47.
86. Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol Neurobiol 2019;56:1812-24.
87. Allbright KO, Bliley JM, Havis E, et al. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle Nerve 2018;58:251-60.