1. Sheng Y, Yang G, Markovich Z, Han SM, Xiao R. Distinct temporal actions of different types of unfolded protein responses during aging. J Cell Physiol. 2021;236:5069-79.
2. Kohler A, Kohler V. Better together: interorganellar communication in the regulation of proteostasis. Contact. 2024;7:25152564241272245.
3. Dana AH, Alejandro SP. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci. 2022;299:120554.
4. Li Y, Huang D, Jia L, et al. LonP1 links mitochondria-ER interaction to regulate heart function. Research. 2023;6:0175.
5. Metzger MB, Michaelis S. Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell. 2009;20:1006-19.
6. Ciplys E, Samuel D, Juozapaitis M, Sasnauskas K, Slibinskas R. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:37.
7. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145-59.
8. Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, et al. mtUPR modulation as a therapeutic target for primary and secondary mitochondrial diseases. Int J Mol Sci. 2023;24:1482.
9. Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol. 2024;326:H317-33.
10. Eckl EM, Ziegemann O, Krumwiede L, Fessler E, Jae LT. Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci. 2021;78:5925-51.
11. Wang YT, Lim Y, McCall MN, et al. Cardioprotection by the mitochondrial unfolded protein response requires ATF5. Am J Physiol Heart Circ Physiol. 2019;317:H472-8.
12. Bar-Ziv R, Dutta N, Hruby A, et al. Glial-derived mitochondrial signals affect neuronal proteostasis and aging. Sci Adv. 2023;9:eadi1411.
13. Angeli S, Foulger A, Chamoli M, et al. The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging. Elife. 2021;10:e63453.
14. Evangelou K, Vasileiou PVS, Papaspyropoulos A, et al. Cellular senescence and cardiovascular diseases: moving to the "heart" of the problem. Physiol Rev. 2023;103:609-47.
15. Zhang W, Che Y, Tang X, et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. Life Med. 2023;2:lnad035.
16. Csordás G, Weaver D, Hajnóczky G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 2018;28:523-40.
17. Voeltz GK, Sawyer EM, Hajnóczky G, Prinz WA. Making the connection: How membrane contact sites have changed our view of organelle biology. Cell. 2024;187:257-70.
18. He H, Zeng B, Wu X, et al. Higher matrix stiffness promotes VSMC senescence by affecting mitochondria-ER contact sites and mitochondria/ER dysfunction. FASEB J. 2023;37:e23318.
19. Maddison DC, Malik B, Amadio L, et al. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep. 2023;42:112883.
20. Hinton A Jr, Katti P, Mungai M, et al. ATF4-dependent increase in mitochondrial-endoplasmic reticulum tethering following OPA1 deletion in skeletal muscle. J Cell Physiol. 2024;239:e31204.
21. Janer A, Morris JL, Krols M, et al. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance. 2024;7:e202302335.
22. Garcia BM, Machado TS, Carvalho KF, et al. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol Hum Reprod. 2020;26:938-52.
23. Ziegler DV, Martin N, Bernard D. Cellular senescence links mitochondria-ER contacts and aging. Commun Biol. 2021;4:1323.
24. Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: possible therapeutic targets in heart-associated diseases. Pharmacol Res. 2020;156:104758.
25. Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci. 2024;81:250.
26. Moqri M, Herzog C, Poganik JR, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. 2023;186:3758-75.
27. Bao H, Cao J, Chen M, et al; Aging Biomarker Consortium. Biomarkers of aging. Sci China Life Sci. 2023;66:893-1066.
28. Sierra F, Kohanski R. Geroscience and the trans-NIH Geroscience Interest Group, GSIG. Geroscience. 2017;39:1-5.
29. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243-78.
30. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-217.
31. Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev. 2020;64:101193.
32. Camacho-Encina M, Booth LK, Redgrave RE, Folaranmi O, Spyridopoulos I, Richardson GD. Cellular senescence, mitochondrial dysfunction, and their link to cardiovascular disease. Cells. 2024;13:353.
33. Guo J, Huang X, Dou L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7:391.
34. Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246-56.
35. Jia K, Dai Y, Liu A, et al. Senolytic agent navitoclax inhibits angiotensin II-induced heart failure in mice. J Cardiovasc Pharmacol. 2020;76:452-60.
36. Sunderland P, Alshammari L, Ambrose E, Torella D, Ellison-hughes GM. Senolytics rejuvenate the reparative activity of human cardiomyocytes and endothelial cells. J Cardiovasc Aging. 2023;3:21.
37. Vue Z, Neikirk K, Vang L, et al. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. Am J Physiol Heart Circ Physiol. 2023;325:H965-82.
38. Tang X, Li PH, Chen HZ. Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front Endocrinol. 2020;11:280.
39. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69:1952-67.
40. Lu X, Gong Y, Hu W, et al. Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death Dis. 2022;13:296.
41. Nieto M, Konigsberg M, Silva-Palacios A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology. 2024;25:71-82.
42. Charles AL, Charloux A, Vogel T, et al. Cumulative deleterious effects of tetrahydrocannabinoid (THC) and ethanol on mitochondrial respiration and reactive oxygen species production are enhanced in old isolated cardiac mitochondria. Int J Mol Sci. 2024;25:1835.
43. Rosa FLL, de Souza IIA, Monnerat G, Campos de Carvalho AC, Maciel L. Aging triggers mitochondrial dysfunction in mice. Int J Mol Sci. 2023;24:10591.
44. Schaum N, Lehallier B, Hahn O, et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature. 2020;583:596-602.
45. Sarver DC, Saqib M, Chen F, Wong GW. Mitochondrial respiration atlas reveals differential changes in mitochondrial function across sex and age. Elife. 2024;13:e96926.
46. Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583:590-5.
47. Zhang MJ, Pisco AO, Darmanis S, Zou J. Mouse aging cell atlas analysis reveals global and cell type-specific aging signatures. Elife. 2021;10:62293.
48. Lehallier B, Gate D, Schaum N, et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med. 2019;25:1843-50.
49. Oh HS, Rutledge J, Nachun D, et al. Organ aging signatures in the plasma proteome track health and disease. Nature. 2023;624:164-72.
50. Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res. 2016;118:1593-611.
51. Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys. 1999;372:399-407.
52. García-Niño WR, Correa F, Rodríguez-Barrena JI, et al. Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures. Basic Res Cardiol. 2017;112:15.
53. Lesnefsky EJ, Gudz TI, Moghaddas S, et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol. 2001;33:37-47.
54. Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Aging-induced mitochondrial dysfunction: two distinct populations of mitochondria versus a combined population. Am J Physiol Heart Circ Physiol. 2024;326:H385-95.
55. Cogliati S, Enriquez JA, Scorrano L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci. 2016;41:261-73.
56. Morris S, Schmelter F, Molina-Riquelme I, et al. Decreased ATP synthase activity is linked to altered spatiotemporal organisation of ATP Synthase in a cellular cardiomyocyte senescent model. bioRxiv 2024.
57. Wang G, Luo Y, Hu J, Wang J, Liu X, Li S. Effects of aging on expression of Mic60 and OPA1 and mitochondrial morphology in myocardium of Tibetan sheep. Animals. 2020;10:2160.
58. Morris S, Molina-Riquelme I, Barrientos G, et al. Inner mitochondrial membrane structure and fusion dynamics are altered in senescent human iPSC-derived and primary rat cardiomyocytes. Biochim Biophys Acta Bioenergy. 2023;1864:148949.
59. Crabtree A, Neikirk K, Marshall AG, et al. Defining mitochondrial cristae morphology changes induced by aging in brown adipose tissue. Adv Biol. 2024;8:e2300186.
60. Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol. 2024;156:266-75.
61. Mokhtari B, Hosseini L, Høilund-Carlsen PF, Salehinasab R, Rajabi M, Badalzadeh R. The additive effects of nicotinamide mononucleotide and melatonin on mitochondrial biogenesis and fission/fusion, autophagy, and microRNA-499 in the aged rat heart with reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:1701-11.
62. Chaudhari SN, Kipreos ET. Increased mitochondrial fusion allows the survival of older animals in diverse C. elegans longevity pathways. Nat Commun. 2017;8:182.
63. Liu YJ, McIntyre RL, Janssens GE, et al. Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30. J Cell Biol. 2020;219:e201907067.
64. Cai Y, Shen H, Weng H, et al. Overexpression of PGC-1α influences the mitochondrial unfolded protein response (mtUPR) induced by MPP+ in human SH-SY5Y neuroblastoma cells. Sci Rep. 2020;10:10444.
65. Bomer N, Pavez-Giani MG, Deiman FE, et al. Selenoprotein DIO2 is a regulator of mitochondrial function, morphology and UPRmt in human cardiomyocytes. Int J Mol Sci. 2021;22:11906.
66. Mone P, Agyapong ED, Morciano G, et al. Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. J Cardiovasc Aging. 2024;4:13.
67. Guo Z, Wang M, Ying X, et al. Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK-SIRT1-PGC1a energy metabolism pathway. Sci Rep. 2023;13:2045.
68. Shen G, Liu W, Xu L, Wang LL. Mitochondrial unfolded protein response and its roles in stem cells. Stem Cells Dev. 2020;29:627-37.
69. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 2004;117:4055-66.
70. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science. 2012;337:587-90.
71. Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430-41.
72. Bennett CF, Vander Wende H, Simko M, et al. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun. 2014;5:3483.
73. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002;21:4411-9.
74. Maragkakis M, Malla S, Hatzoglou M, et al. Biology of stress responses in aging. Aging Biol. 2023;1:20230001.
75. Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics. 2013;92:181-94.
76. Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPRmt): what we know thus far. Front Cell Dev Biol. 2024;12:1405393.
77. Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci. 2022;47:645-59.
78. Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217:137-43.
79. Horibe T, Hoogenraad NJ. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS One. 2007;2:e835.
80. Aldridge JE, Horibe T, Hoogenraad NJ. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One. 2007;2:e874.
81. Zhou H, Yuan D, Gao W, et al. Loss of high-temperature requirement protein A2 protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. IUBMB Life. 2020;72:1659-79.
82. Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709-11.
83. Rolland SG, Schneid S, Schwarz M, et al. Compromised mitochondrial protein import acts as a signal for UPRmt. Cell Rep. 2019;28:1659-69.e5.
84. Lee MJ, Jang Y, Zhu J, et al. Auraptene enhances junction assembly in cerebrovascular endothelial cells by promoting resilience to mitochondrial stress through activation of antioxidant enzymes and mtUPR. Antioxidants. 2021;10:475.
85. Pulliam DA, Deepa SS, Liu Y, et al. Complex IV-deficient Surf1-/- mice initiate mitochondrial stress responses. Biochem J. 2014;462:359-71.
86. Owusu-Ansah E, Song W, Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell. 2013;155:699-712.
87. Zhao K, Huang X, Zhao W, Lu B, Yang Z. LONP1-mediated mitochondrial quality control safeguards metabolic shifts in heart development. Development. 2022;149:dev200458.
88. Zhang C, Shen S, Xu L, et al. LONP1 alleviates ageing-related renal fibrosis by maintaining mitochondrial homeostasis. J Cell Mol Med. 2024;28:e70090.
89. Meng J, Lv Z, Guo M, et al. A Lycium barbarum extract inhibits β-amyloid toxicity by activating the antioxidant system and mtUPR in a Caenorhabditis elegans model of Alzheimer's disease. FASEB J. 2022;36:e22156.
90. Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 2014;34:699-710.
91. Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19:109-20.
92. Xu WN, Zheng HL, Yang RZ, et al. The mitochondrial UPR induced by ATF5 attenuates intervertebral disc degeneration via cooperating with mitophagy. Cell Biol Toxicol. 2024;40:16.
93. Ito A, Zhao Q, Tanaka Y, et al. Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans. Biogerontology. 2021;22:119-31.
94. Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res. 2019;53:139-49.
95. Zhang B, Tan Y, Zhang Z, et al. Novel PGC-1α/ATF5 axis partly activates UPRmt and mediates cardioprotective role of tetrahydrocurcumin in pathological cardiac hypertrophy. Oxid Med Cell Longev. 2020;2020:9187065.
96. Chen S, Henderson A, Petriello MC, et al. Trimethylamine N-Oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 2019;30:1141-51.e5.
97. Brunt VE, Gioscia-Ryan RA, Casso AG, et al. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension. 2020;76:101-12.
98. An H, Zhou B, Hayakawa K, et al. ATF5-mediated mitochondrial unfolded protein response (UPRmt) protects neurons against oxygen-glucose deprivation and cerebral ischemia. Stroke. 2024;55:1904-13.
99. Guo Q, Xu Z, Zhou D, et al. Mitochondrial proteostasis stress in muscle drives a long-range protective response to alleviate dietary obesity independently of ATF4. Sci Adv. 2022;8:eabo0340.
100. Deng J, Wang D, Shi Y, et al. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother. 2024;177:116989.
101. Hinton A Jr, Claypool SM, Neikirk K, et al. Mitochondrial structure and function in human heart failure. Circ Res. 2024;135:372-96.
102. Sun J, Tai S, Guo Y, et al. Sex differences in characteristics and outcomes in elderly heart failure patients with preserved ejection fraction: a post-hoc analysis from TOPCAT. Front Cardiovasc Med. 2021;8:721850.
103. Gharagozloo K, Mehdizadeh M, Heckman G, et al. Heart failure with preserved ejection fraction in the elderly population: basic mechanisms and clinical considerations. Can J Cardiol. 2024;40:1424-44.
104. Hoshino A, Okawa Y, Ariyoshi M, et al. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail. 2014;7:500-9.
105. Bozi LH, Jannig PR, Rolim N, et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med. 2016;20:2208-12.
106. Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351-6.
107. Kitakata H, Endo J, Hashimoto S, et al. Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress. Biochem Biophys Res Commun. 2021;572:185-90.
108. Smyrnias I, Gray SP, Okonko DO, et al. Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload. J Am Coll Cardiol. 2019;73:1795-806.
109. Guo Y, Wang Z, Qin X, et al. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovasc Res. 2018;114:979-91.
110. Pryde KR, Taanman JW, Schapira AH. A LON-ClpP Proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep. 2016;17:2522-31.
111. Wai T, García-Prieto J, Baker MJ, et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science. 2015;350:aad0116.
112. Fan F, Duan Y, Yang F, et al. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2020;27:587-600.
113. Svagusa T, Sikiric S, Milavic M, et al. Heart failure in patients is associated with downregulation of mitochondrial quality control genes. Eur J Clin Invest. 2023;53:e14054.
114. Mirosevic V, Svagusa T, Matic N, et al. Cardiotoxicity of iron and zinc and their association with the mitochondrial unfolded protein response in humans. Int J Mol Sci. 2024;25:9648.
115. Damluji AA, van Diepen S, Katz JN, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American heart association. Circulation. 2021;144:e16-35.
116. Liu G, Wang M, Lv X, Guan Y, Li J, Xie J. Identification of mitochondria-related gene biomarkers associated with immune infiltration in acute myocardial infarction. iScience. 2024;27:110275.
117. Arroyo-Campuzano M, Gil-Hernández A, Silva-Palacios A. Cardiosome-mediated protection in myocardial ischemia. Clin Chim Acta. 2023;545:117374.
118. Mariani J, Ou R, Bailey M, et al. Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg. 2000;120:660-7.
119. Venkatesh S, Li M, Saito T, et al. Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo. J Mol Cell Cardiol. 2019;128:38-50.
120. Ji H, Wang J, Muid D, Song W, Jiang Y, Zhou H. FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal. 2022;92:110249.
121. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285:1390-3.
122. Bronikowski AM, Carter PA, Morgan TJ, et al. Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol Genomics. 2003;12:129-38.
123. Rojas-Morales P, León-Contreras JC, Granados-Pineda J, et al. Protection against renal ischemia and reperfusion injury by short-term time-restricted feeding involves the mitochondrial unfolded protein response. Free Radic Biol Med. 2020;154:75-83.
124. Wang K, Zhang J, Liu J, et al. Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death: Omi/HtrA2 and aged heart injury. Age. 2013;35:733-46.
125. Li X, Zhang X, Zeng Z, et al. Serum albumin and prognosis in elderly patients with nonischemic dilated cardiomyopathy. J Cardiovasc Med. 2023;24:752-7.
126. Jin L, Geng L, Ying L, et al. FGF21-sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation. 2022;146:1537-57.
127. Nandi SS, Katsurada K, Mahata SK, Patel KP. Neurogenic hypertension mediated mitochondrial abnormality leads to cardiomyopathy: contribution of UPRmt and Norepinephrine-miR-18a-5p-HIF-1α Axis. Front Physiol. 2021;12:718982.
128. Tezze C, Romanello V, Desbats MA, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 2017;25:1374-89.e6.
129. Ahola S, Pazurek LA, Mayer F, et al. Opa1 processing is dispensable in mouse development but is protective in mitochondrial cardiomyopathy. Sci Adv. 2024;10:eadp0443.
130. Seiferling D, Szczepanowska K, Becker C, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64.
131. Longhitano L, Distefano A, Musso N, et al. (+)-Lipoic acid reduces mitochondrial unfolded protein response and attenuates oxidative stress and aging in an in vitro model of non-alcoholic fatty liver disease. J Transl Med. 2024;22:82.
132. Xiaowei X, Qian X, Dingzhou Z. Sirtuin-3 activates the mitochondrial unfolded protein response and reduces cerebral ischemia/reperfusion injury. Int J Biol Sci. 2023;19:4327-39.
133. Barcena ML, Pozdniakova S, Haritonow N, et al. Dilated cardiomyopathy impairs mitochondrial biogenesis and promotes inflammation in an age- and sex-dependent manner. Aging. 2020;12:24117-33.
134. Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res. 2020;126:439-52.
135. Nichtová Z, Fernandez-Sanz C, De La Fuente S, et al. Enhanced mitochondria-SR tethering triggers adaptive cardiac muscle remodeling. Circ Res. 2023;132:e171-87.
136. Bosc C, Broin N, Fanjul M, et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat Commun. 2020;11:4056.
137. Ching C, Maufront J, di Cicco A, Lévy D, Dezi M. Cool-contacts: cryo-electron microscopy of membrane contact sites and their components. Contact. 2024;7:25152564241231364.
138. Li Y, Tian X, Yu Q, et al. Alleviation of hepatic insulin resistance and steatosis with NMN via improving endoplasmic reticulum-Mitochondria miscommunication in the liver of HFD mice. Biomed Pharmacother. 2024;175:116682.
139. Sun Y, Cai Y, Qian S, Chiou H, Zang QS. Beclin-1 improves mitochondria-associated membranes in the heart during endotoxemia. FASEB Bioadv. 2021;3:123-35.
140. McCandless MG, Altara R, Booz GW, Kurdi M. What role do mitochondria have in diastolic dysfunction? Implications for diabetic cardiomyopathy and heart failure with preserved ejection function. J Cardiovasc Pharmacol. 2022;79:399-406.
141. Ren L, Gopireddy RR, Perkins G, et al. Disruption of mitochondria-sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure. Proc Natl Acad Sci USA. 2022;119:e2206708119.
142. Zhang P, Konja D, Zhang Y, et al. Clusterin is involved in mediating the metabolic function of adipose SIRT1. iScience. 2022;25:103709.
143. Chen R, Zheng A, Wang Y, et al. Salvianolic acid B improves mitochondrial dysfunction of septic cardiomyopathy via enhancing ATF5-mediated mitochondrial unfolded protein response. Toxicol Appl Pharmacol. 2024;491:117072.
144. Li H, Chen D, Zhang X, et al. Screening of an FDA-approved compound library identifies apigenin for the treatment of myocardial injury. Int J Biol Sci. 2023;19:5233-44.
145. Dong X, Zhuang HW, Wen RJ, et al. Xinyang tablet alleviated cardiac dysfunction in a cardiac pressure overload model by regulating the receptor-interacting serum/three-protein kinase 3/FUN14 domain containing 1-mediated mitochondrial unfolded protein response and mitophagy. J Ethnopharmacol. 2024;330:118152.
146. Sun JM, Liu YX, Liu YD, et al. Salvianolic acid B protects against UVB-induced skin aging via activation of NRF2. Phytomedicine. 2024;130:155676.
147. Ma X, Xu W, Zhang Z, et al. Salvianolic acid B ameliorates cognitive deficits through IGF-1/Akt pathway in rats with vascular dementia. Cell Physiol Biochem. 2017;43:1381-91.
148. Wang D, Yang Y, Zou X, Zhang J, Zheng Z, Wang Z. Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice. J Gerontol A Biol Sci Med Sci. 2020;75:2081-8.
149. Yao X, Guo P, Li YH, et al. Apigenin delays postovulatory oocyte aging by reducing oxidative stress through SIRT1 upregulation. Theriogenology. 2024;218:89-98.
150. Ma Y, Ma Z, Zhang Y, et al. Apigenin and baicalein ameliorate thoracic aortic structural deterioration and cognitive deficit via inhibiting AGEs/RAGE/NF-κB pathway in D-galactose-induced aging rats. Eur J Pharmacol. 2024;976:176660.
151. Wang Y, Wei N, Li X. Preclinical evidence and possible mechanisms of baicalein for rats and mice with parkinson's disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:277.
152. Cai P, Lu Y, Yin Z, Wang X, Zhou X, Li Z. Baicalein ameliorates osteoporosis via AKT/FOXO1 signaling. Aging. 2021;13:17370-9.
153. Guo L, Yang J, Yuan W, et al. Baicalein ameliorated obesity-induced cardiac dysfunction by regulating the mitochondrial unfolded protein response through NRF2 signaling. Phytomedicine. 2024;126:155441.
154. Shi L, Tan Y, Zheng W, et al. CTRP3 alleviates mitochondrial dysfunction and oxidative stress injury in pathological cardiac hypertrophy by activating UPRmt via the SIRT1/ATF5 axis. Cell Death Discov. 2024;10:53.
155. Chang X, Zhou S, Liu J, et al. Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. J Ethnopharmacol. 2024;320:117371.
156. Chang X, Zhang Q, Huang Y, et al. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res. 2024;38:2496-517.
157. Xu M, Li LP, He X, et al. Metformin induction of heat shock factor 1 activation and the mitochondrial unfolded protein response alleviate cardiac remodeling in spontaneously hypertensive rats. FASEB J. 2024;38:e23654.
158. Xu M, Xue RQ, Lu Y, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res. 2019;115:530-45.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.