Associate Editor

Xiaoying Zhuang
Department of Mathematics and Physics, Leibniz Universität Hannover, Hanover, Germany.
HomePage
Bio
Prof. Xiaoying Zhuang’s key research area is machine learning and computational mechanics for the modelling and design of novel photonic systems, metamaterials and nanostructures. She has developed numerous innovative and robust numerical methods including level-set methods, partition-of-unity methods (such as mesh-free methods, XFEM formulations, phantom node methods and finite cover methods), multiscale methods, phase field models and error-driven adaptive methods developed and implemented. She also has experience with coupled (hydro-mechanical, thermo-mechanical, thermo-hydro-mechanical and electro-mechanical) problems, uncertainty analyzes/uncertainty quantification as well as inverse methods and optimization processes. She has applied innovative numerical methods to solve complex problems in engineering, solid state physics, and materials science. The research focus of Sofja Kovalevskaja Project funded by the Humboldt Foundation is the modeling, optimization and development of polymer composite materials. Her ongoing ERC Starting Grant is focused on the optimization and development of piezoelectric and flexoelectric nano-energy converters.
Research Interests
Computational mechanics, Materials design
Contributions:

Machine learning assisted intelligent design of meta structures: a review

Special Issue:

Machine Learning for Microstructures and Materials

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/