REFERENCES

1. Beidokhti MZ, Naeeni ST, Abdi Ghahroudi MS. Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civ Eng J 2019;5:447-57.

2. Liu J, Liu YJ, Liu Y, Liu Z, Zhang AN. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: a case study of Yulin, China. Ecotoxicol Environ Saf 2018;164:261-9.

3. Shen F, Mao L, Sun R, Du J, Tan Z, Ding M. Contamination evaluation and source identification of heavy metals in the sediments from the Lishui River watershed, Southern China. Int J Environ Res Public Health 2019;16:336.

4. Sharma R, Saini KC, Rajput S, et al. Environmental friendly technologies for remediation of toxic heavy metals: pragmatic approaches for environmental management. In: Aravind J, Kamaraj M, Karthikeyan S, editors. Strategies and tools for pollutant mitigation. Cham: Springer International Publishing; 2022. pp. 199-223.

5. Malik L A, Bashir A, Qureashi A, Pandith A H. Detection and removal of heavy metal ions: a review. Environ Chem Lett 2019;17:1495-521.

6. Ishaq S, Jabeen G, Arshad M, et al. Heavy metal toxicity arising from the industrial effluents repercussions on oxidative stress, liver enzymes and antioxidant activity in brain homogenates of Oreochromis niloticus. Sci Rep 2023;13:19936.

7. Gutwiński P, Cema G, Ziembińska-buczyńska A, Wyszyńska K, Surmacz-górska J. Long-term effect of heavy metals Cr(III), Zn(II), Cd(II), Cu(II), Ni(II), Pb(II) on the anammox process performance. J Water Process Eng 2021;39:101668.

8. Özdemir S, Serkan Yalçın M, Kılınç E. Preconcentrations of Ni(II) and Pb(II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles. Food Chem 2021;336:127675.

9. Ali S, Hussain S, Khan R, et al. Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits. Environ Sci Pollut Res Int 2019;26:3909-20.

10. Byber K, Lison D, Verougstraete V, Dressel H, Hotz P. Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review. Crit Rev Toxicol 2016;46:191-240.

11. Liu S, Shi J, Wang J, Dai Y, Li H, Li J, Zhang P. Interactions between microplastics and heavy metals in aquatic environments: a review. Front Microbiol 2021;12:652520.

12. Duan C, Ma T, Wang J, Zhou Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 2020;37:101339.

13. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: human health and environmental toxicology. Int J Environ Res Public Health 2020;17:679.

14. Mokhtari N, Dinari M, Rahmanian O. Novel porous organic triazine-based polyimide with high nitrogen levels for highly efficient removal of Ni(II) from aqueous solution. Polym Int 2019;68:1178-85.

15. Patil R, Sontakke T, Biradar A, Nalage D. Zinc: an essential trace element for human health and beyond. Food Health 2023;5:13.

16. Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021;296:100320.

17. Taiwo AM, Oyeleye OF, Majekodunmi BJ, et al. Evaluating the health risk of metals (Zn, Cr, Cd, Ni, Pb) in staple foods from Lagos and Ogun States, Southwestern Nigeria. Environ Monit Assess 2019;191:167.

18. Shabbir Z, Sardar A, Shabbir A, et al. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020;259:127436.

19. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans-a review of the potential sources and systemic health effects. Toxicology 2017;387:43-56.

20. Fei Y, Hu YH. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. J Mater Chem A 2022;10:1047-85.

21. Esalah J, Husein MM. Removal of heavy metals from aqueous solutions by precipitation-filtration using novel organo-phosphorus ligands. Separation Sci Technol 2008;43:3461-75.

22. Dabrowski A, Hubicki Z, Podkościelny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004;56:91-106.

23. Oatley-radcliffe DL, Walters M, Ainscough TJ, Williams PM, Mohammad AW, Hilal N. Nanofiltration membranes and processes: a review of research trends over the past decade. J Water Process Eng 2017;19:164-71.

24. Tran T, Leu H, Chiu K, Lin C. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions: electrochemical treatment of heavy metal containing wastewater. J Chin Chem Soc 2017;64:493-502.

25. Aarfane A, Bensemlali M, Elmelouky A, et al. Electrocoagulation efficiency probed using electrochemical impedance spectroscopy. Chin J Chem Eng 2024;75:266-73.

26. Elgarahy A, Elwakeel K, Mohammad S, Elshoubaky G. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 2021;4:100209.

27. Masoumi A, Ghaemy M. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride). Express Polym Lett 2014;8:187-96.

28. Chai WS, Cheun JY, Kumar PS, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 2021;296:126589.

29. Samiey B, Cheng CH, Wu J. Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 2014;7:673-726.

30. Geng Z, Lin Y, Yu X, et al. Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 2012;22:3527.

31. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 2005;30:38-70.

32. Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH. Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem 2022;102:342-79.

33. Oladoye PO. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: a state-of-the-art review. Chemosphere 2022;287:132130.

34. Abdollahi N, Moussavi G, Giannakis S. A review of heavy metals’ removal from aqueous matrices by metal-organic frameworks (MOFs): state-of-the art and recent advances. J Environ Chem Eng 2022;10:107394.

35. Sikiru S, Abiodun OA, Sanusi YK, et al. A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. J. Environ Chem Eng 2022;10:108065.

36. Boraah N, Chakma S, Kaushal P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: a critical review and bibliometric analysis. J Environ Chem Eng 2022;10:107825.

37. Abdel-magied AF, Abdelhamid HN, Ashour RM, et al. Magnetic metal-organic frameworks for efficient removal of cadmium(II), and lead(II) from aqueous solution. J Environ Chem Eng 2022;10:107467.

38. Gomri M, Abderrazak H, Chabbah T, et al. Adsorption characteristics of aromatic pollutants and their halogenated derivatives on bio-based poly (ether-pyridine)s. J Environ Chem Eng 2020;8:104333.

39. Brirmi NEH, Chabbah T, Chatti S, et al. Effect of the pendent groups on biobased polymers, obtained from click chemistry suitable, for the adsorption of organic pollutants from water. Polym Adv Technol 2022;33:3551-71.

40. Gupta S, Sireesha S, Sreedhar I, Patel C M, Anitha K L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 2020;38:101561.

41. Järup L. Hazards of heavy metal contamination. Br Med Bull 2003;68:167-82.

42. Ali H, Khan E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 2018;16:903-17.

43. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 2021;262:128350.

44. Rae IB, Gibb SW, Lu S. Biosorption of Hg from aqueous solutions by crab carapace. J Hazard Mater 2009;164:1601-4.

45. Hu XF, Lowe M, Chan HM. Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis. Environ Res 2021;193:110538.

46. Chen R, Xu Y, Xu C, et al. Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res Int 2019;26:31384-91.

47. Hensawang S, Chanpiwat P. Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand. Environ Monit Assess 2017;189:599.

48. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health 2020;17:3782.

49. Musfirah M, Rangkuti AF. The lead exposure risk due to wells water consumption in code riverside community, Yogyakarta city. Kemas 2019;14:318-25.

50. Thongsringklee M, Robson MG, Siriwong W. Health effects of low level exposure to lead among communication radio repair workers at Samutsakhon province, Thailand. Hum Ecol Risk Assess 2021;27:344-51.

51. Rizwan M, Ali S, Hussain A, et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 2017;187:35-42.

52. Yahya EB, Alqadhi AM. Recent trends in cancer therapy: a review on the current state of gene delivery. Life Sci 2021;269:119087.

53. Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021;26:80.

54. Rahaman MS, Rahman MM, Mise N, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 2021;289:117940.

55. Rahman Z, Singh V P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 2019;191:1-21.

56. Yoshinaga M, Ninomiya H, Al Hossain MMA, et al. A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution. Chemosphere 2018;201:667-75.

57. Peixoto S, Henriques I, Loureiro S. Long-term effects of Cu(OH)2 nanopesticide exposure on soil microbial communities. Environ Pollut 2021;269:116113.

58. Neff E, Dharmarajan G. The direct and indirect effects of copper on vector-borne disease dynamics. Environ Pollut 2021;269:116213.

59. Salih HHM, El Badawy AM, Tolaymat TM, Patterson CL. Removal of stabilized silver nanoparticles from surface water by conventional treatment processes. Adv Nanopart 2019;8:21-35.

60. Krou NJ. Etude expérimentale et modélisation d’un procédé séquentiel AD-OX d’élimination de polluants organiques. Génie des procédés 2010. (in French). Available from: https://theses.hal.science/tel-04272164. [Last accessed on 20 Nov 2024].

61. Taamneh Y, Sharadqah S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl Water Sci 2017;7:2021-8.

62. Ugwu EI, Othmani A, Nnaji CC. A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. Int J Environ Sci Technol 2022;19:8061-84.

63. Taffarel SR, Rubio J. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Min Eng 2009;22:336-43.

64. Álvarez AM, Guerrón DB, Montero Calderón C. Natural zeolite as a chromium VI removal agent in tannery effluents. Heliyon 2021;7:e07974.

65. Mehdi B, Belkacemi H, Brahmi-ingrachen D, Braham LA, Muhr L. Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modeling. Groundwater Sustain Dev 2022;17:100757.

66. Khalfa L, Sdiri A, Bagane M, Cervera ML. Multi-element modeling of heavy metals competitive removal from aqueous solution by raw and activated clay from the Aleg formation (Southern Tunisia). Int J Environ Sci Technol 2020;17:2123-40.

67. Dim PE, Termtanun M. Treated clay mineral as adsorbent for the removal of heavy metals from aqueous solution. Appl Sci Eng Prog 2021;14:511-24.

68. Angin D, Sarikulce S. The effect of activation temperature on properties of activated carbon prepared from wine industry pressing waste. Desal Water Treat 2017;73:373-9.

69. Zhang Z, Wang T, Zhang H, Liu Y, Xing B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Environ 2021;757:143910.

70. Ghorbani F, Kamari S, Zamani S, Akbari S, Salehi M. Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surf Interfaces 2020;18:100444.

71. Deng Y, Huang S, Laird DA, Wang X, Meng Z. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere 2019;218:308-18.

72. Lee ME, Park JH, Chung JW. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. J Environ Manage 2019;236:118-24.

73. Zhao W, Geng X, Lu J, et al. Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas. Fuel 2021;285:119131.

74. Park JH, Wang JJ, Kim SH, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. J Colloid Interface Sci 2019;553:298-307.

75. Lata S, Singh PK, Samadder SR. Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 2015;12:1461-78.

76. Afolabi F, Musonge P, Bakare B. Evaluation of lead (II) removal from wastewater using banana peels: optimization study. Pol J Environ Stud 2021;30:1487-96.

77. Çelebi H, Gök G, Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci Rep 2020;10:17570.

78. Khalil U, Shakoor MB, Ali S, et al. Selective removal of hexavalent chromium from wastewater by rice husk: kinetic, isotherm and spectroscopic investigation. Water 2021;13:263.

79. Amar MB, Walha K, Salvadó V. Evaluation of olive stones for Cd(II), Cu(II), Pb(II) and Cr(VI) biosorption from aqueous solution: equilibrium and kinetics. Int J Environ Res 2020;14:193-204.

80. Varghese AG, Paul SA, Latha MS. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett 2019;17:867-77.

81. Begum S, Yuhana NY, Md Saleh N, Kamarudin NHN, Sulong AB. Review of chitosan composite as a heavy metal adsorbent: material preparation and properties. Carbohydr Polym 2021;259:117613.

82. Tarabukin DV, Torlopov MA, Shchemelinina TN, et al. Biosorbents based on esterified starch carrying immobilized oil-degrading microorganisms. J Biotechnol 2017;260:31-7.

83. Yu D, Wang Y, Wu M, Zhang L, Wang L, Ni H. Surface functionalization of cellulose with hyperbranched polyamide for efficient adsorption of organic dyes and heavy metals. J Clean Prod 2019;232:774-83.

84. Guleria A, Kumari G, Lima EC. Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohydr Polym 2020;228:115396.

85. Yin W, Liu L, Tang S, Zhang H, Pan X, Chi R. Facile synthesis of triazole and carboxyl-functionalized cellulose-based adsorbent via click chemistry strategy for efficient Gd(III) removal. Cellulose 2019;26:7107-23.

86. Mahalakshmi R, Saravanan R, Selvakumar P, Karthikeyan MS, Ravikumar L. Polymeric substitution of triazole moieties in cellulosic schiff base for heavy metal complexation studies. J Polym Environ 2022;30:360-72.

87. Dinari M, Mokhtari N, Hatami M. Covalent triazine based polymer with high nitrogen levels for removal of copper‎‎ (II) ions ‎from aqueous solutions. J Polym Res 2021;28:2463.

88. Chu S, Feng X, Liu C, Wu H, Liu X. Advances in chelating resins for adsorption of heavy metal ions. Ind Eng Chem Res 2022;61:11309-28.

89. Wu H, Lin G, Liu C, Chu S, Mo C, Liu X. Progress and challenges in molecularly imprinted polymers for adsorption of heavy metal ions from wastewater. Trends Environ Anal Chem 2022;36:e00178.

90. Bazzar M, Ghaemy M, Alizadeh R. Synthesis and characterization of new fluorescent polyimides bearing 1,2,4-triazole and 1,2-diaryl quinoxaline: study properties and application to the extraction/elimination of metallic ions from aqueous media. React Funct Polym 2013;73:492-8.

91. Ghaemy M, Qasemi S, Ghassemi K, Bazzar M. Nanostructured composites of poly(triazole-amide-imide)s and reactive titanium oxide by epoxide functionalization: thermal, mechanical, photophysical and metal ions adsorption properties. J Polym Res 2013;20:278.

92. Ghaemy M, Ghassemi K, Qasemi S, Bazzar M. Synthesis, characterization and properties of new poly(triazole-imide)s and their composites with silane-modified nanoclay. Polym Bull 2015;72:2435-53.

93. Amininasab SM, Esmaili S, Taghavi M, Shami Z. Fabrication and characterization of novel high-performance fluorinated polyimides with xanthene pendent architecture: study of thermal, photophysical, antibacterial and heavy metal ion adsorption behavior. React Funct Polym 2016;192:48-57.

94. Amininasab SM, Esmaili S, Shami Z. High-performance polyimides based on pyridine and xanthene pendant groups; synthesis, characterization, photoactivity, thermal, antibacterial, and Cr(VI) ion adsorption properties. High Perform Polym 2020;32:371-82.

95. Huang X, Li H, Liu C, Wei C. Design and synthesis of high heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine and trifluoromethylthiophenyl units. High Perform Polym 2019;31:107-115.

96. Ghorbani M, Eisazadeh H. Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Compos Part B Eng 2013;45:1-7.

97. Rafiee Z, Golriz L, Karimipour G, Kowkabi S. Preparation and properties of polyimides having porphyrin moieties for heavy metals removal. Polym Bull 2021;78:481-92.

98. Natale C, Monti D, Paolesse R. Chemical sensitivity of porphyrin assemblies. Mater Today 2010;13:46-52.

99. Jlalia I, Zouaoui F, Chabbah T, et al. Adsorption characteristics of WFD heavy metal ions on new biosourced polyimide films determined by electrochemical impedance spectroscopy. J Inorg Organomet Polym 2021;31:2471-82.

100. Lakouraj MM, Rahpaima G, Azimi R. Organosoluble xanthone-based polyimides: synthesis, characterization, antioxidant activity and heavy-metal sorption. Mater Tehnol 2016;50:471-8.

101. Mansoori Y, Ghanbari M. Novel polyimides obtained from a new aromatic diamine (BAPO) containing pyridine and 1,3,4-oxadiazole moieties for removal of Co(II) and Ni(II) ions. Polymers for Advanced Techs 2015;26:658-64.

102. Manzoor A, Kalsoom S, Khan YK, Siddiqi HM, Shah MH. Synthesis of sulfonated copolyimides by thermal imidization for efficient lead ion adsorption from aqueous media. ACS Appl Polym Mater 2022;4:5660-9.

103. Ravikumar L, Kalaivani SS, Murugesan A, et al. Synthesis, characterization, and heavy metal ion adsorption studies of polyamides, polythioamides having pendent chlorobenzylidine rings. J of Applied Polymer Sci 2011;122:1634-42.

104. Murugesan A, Ravikumar L, Sathyaselvabala V, et al. Removal of Pb(II), Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: Equilibrium and kinetic approach. Desalination 2011;271:199-208.

105. Kirupha SD, Murugesan A, Vidhyadevi T, Baskaralingam P, Sivanesan S, Ravikumar L. Novel polymeric adsorbents bearing amide, pyridyl, azomethine and thiourea binding sites for the removal of Cu(II) and Pb(II) ions from aqueous solution. Separation Sci Technol 2012;48:254-62.

106. Gómez-valdemoro A, San-josé N, García FC, De La Peña JL, Serna F, García JM. Novel aromatic polyamides with main chain and pendant 1,2,4-triazole moieties and their application to the extraction/elimination of mercury cations from aqueous media. Polym Chem 2010;1:1291.

107. Soleimani B, Taghavi M, Ghaemy M. Synthesis, characterization and heavy metal ion adsorption behavior of imidazole-based novel polyamides and polyimides. J Mex Chem Soc 2017:61.

108. Santiago AA, Ibarra-palos A, Cruz-morales JA, et al. Synthesis, characterization, and heavy metal adsorption properties of sulfonated aromatic polyamides. High Perform Polym 2018;30:591-601.

109. Albukhari SM, Hussein MA, Abdel Rahman MA, Marwani HM. Highly selective heteroaromatic sulfur containing polyamides for Hg+2 environmental remediation. Des Monomers Polym 2020;23:25-39.

110. Rezania H, Vatanpour V, Salehi E, Gavari N, Shockravi A, Ehsani M. Wholly heterocycles-based polyamide-sulfide containing pyridine and thiazole rings: a super-adsorbent polymer for lead removal. J Polym Environ 2019;27:1790-800.

111. Hsiao S, Guo W, Kung Y, Lee Y. Redox-active and electrochromic aromatic poly(amide-imide)s with 2,4-dimethoxytriphenylamine chromophores. J Polym Res 2011;18:1353-64.

112. Faghihi K, Hajibeygi M, Shabanian M. New photosensitive and optically active organo-soluble poly(amide-imide)s from N,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids and 1,5-bis(4-aminophenyl)penta-1,4-dien-3-one: synthesis and characterization. J Polym Res 2010;17:379-90.

113. Thiruvasagam P, Vijayan M. Synthesis of new diacid monomers and poly(amide-imide)s: study of structure-property relationship and applications. J Polym Res 2012;19:9845.

114. Alborzi A, Zahmatkesh S, Yazdanpanah A. l-Lysine-derived optically active poly(hydrazide-imide)s: synthesis, characterization and their application in removal of heavy metal ions. Polym Bull 2013;70:3359-72.

115. Vakili MR, Zahmatkesh S, Panahiyan MJ, Jafarizadeh T. Poly(amide-hydrazide-imide)s containing L-aspartic acid: synthesis, characterization, and their applications in removal of heavy metal ions. Des Monomers Polym 2015;18:315-22.

116. Bıyıkoğlu M, Çiftçi H. Adsorption of Ag(I) ions from wastewaters using poly(2-aminothiazole): kinetic and isotherm studies. Polym Bull 2020;77:6161-74.

117. Puguan JMC, Kim H. Synthesis of free-standing poly(ionic liquid) bearing 1,2,3-triazole group for the adsorptive elimination of Cr6+ from aqueous solution. J Environ Chem Eng 2020;8:104084.

118. Ouerghui A, Dardouri M, Elamari H, Ammari F, Girard C. Chemical modification of polystyrene merrifield: extraction of zinc and magnesium located in wastewater. AJPST 2019;5:73.

119. Qureshi F, Memon SQ, Khuhawar MY, Jahangir TM. Removal of Co2+, Cu2+ and Au3+ ions from contaminated wastewater by using new fluorescent and antibacterial polymer as sorbent. Polym Bull 2021;78:1505-33.

120. Qureshi F, Memon SQ, Khuhawar MY, Jahangir TM, Channar A. Synthesis and application of fluorescent and thermally stable polyazomethine as adsorbent in the remediation of Ni (II), Cu (II) and Co (II) from wastewater systems. J Polym Res 2021;28:2582.

121. Chabbah T, Abderrazak H, Souissi R, et al. A sensitive impedimetric sensor based on biosourced polyphosphine films for the detection of lead ions. Chemosensors 2020;8:34.

122. Chabbah T, Chatti S, Jaffrezic-renault N, Weidner S, Marestin C, Mercier R. Impedimetric sensors based on diethylphosphonate-containing poly(arylene ether nitrile)s films for the detection of lead ions. Polym Adv Technol 2023;34:2471-81.

123. Huang J, Zheng Y, Luo L, et al. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions. J Hazard Mater 2016;306:210-9.

124. Jia W, Du J, Jiang M, et al. Preparation and Cr (VI) adsorption of functionalized polyimide fibers. J of Applied Polymer Sci 2022;139:e52799.

125. Bassyouni D, Mohamed M, El-ashtoukhy E, El-latif MA, Zaatout A, Hamad H. Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II). Microchem J 2019;149:103998.

126. Hafiz Ahmed A, Mohamed W, El Hamouly S, Maziad N, Abd Elmonam M. Preparation, characterization and water treatment application of electro-spun polyamide 6 nanocomposite. Egypt J Chem 2022;0:0-0.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/