REFERENCES

1. Thompson RC, Swan SH, Moore CJ, vom Saal FS. Our plastic age. Philos Trans R Soc Lond B Biol Sci 2009;364:1973-6.

2. Andrady AL, Neal MA. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci 2009;364:1977-84.

3. Enyoh CE, Verla AW, Verla EN. Uptake of Microplastics by plant: a reason to worry or to be happy? Available from: https://www.researchgate.net/publication/334083970_Uptake_of_Microplastics_by_Plant_a_Reason_to_Worry_or_to_be_Happy. [Last accessed on 29 Dec 2023].

4. Enyoh CE, Verla AW, Verla EN, Ibe FC, Amaobi CE. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess 2019;191:668.

5. Heskett M, Takada H, Yamashita R, et al. Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands: toward establishment of background concentrations for International Pellet Watch. Mar Pollut Bull 2012;64:445-8.

6. Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 2011;62:1683-92.

7. Zhu F, Zhu C, Wang C, Gu C. Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol 2019;102:741-9.

8. Ritchie H, Samborska Veronika, Roser M. Plastic pollution. 2020. Available from: https://ourworldindata.org/plastic-pollution. [Last accessed on 29 Dec 2023].

9. Oliveira M, Almeida M. The why and how of micro(nano)plastic research. TrAC Trend Anal Chem 2019;114:196-201.

10. Baun A, Hartmann NB, Grieger KD, Hansen SF. Setting the limits for engineered nanoparticles in European surface waters - are current approaches appropriate? J Environ Monit 2009;11:1774-81.

11. Arthur C, Baker JE, Bamford HA. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. Available from: https://repository.library.noaa.gov/view/noaa/2509. [Last accessed on 29 Dec 2023]

12. Ebere EC, Wirnkor VA, Ngozi VE, Chukwuemeka IS. Macrodebris and microplastics pollution in Nigeria: first report on abundance, distribution and composition. Environ Anal Health Toxicol 2019;34:e2019012.

13. Cole M, Coppock R, Lindeque PK, et al. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a coldwater copepod. Environ Sci Technol 2019;53:7075-82.

14. Sridharan S, Kumar M, Singh L, Bolan NS, Saha M. Microplastics as an emerging source of particulate air pollution: a critical review. J Hazard Mater 2021;418:126245.

15. Li L, Zhou Q, Yin N, Tu C, Luo Y. Uptake and accumulation of microplastics in an edible plant. Chin Sci Bull 2019;64:928-34.

16. Burton GA Jr. Stressor exposures determine risk: so, why do fellow scientists continue to focus on superficial microplastics risk? Environ Sci Technol 2017;51:13515-6.

17. Wirnkor AV, Ngozi VE, Medo AC, Chioma LK, Ngozi USM, Christian EE. Biomonitoring of heavy metals in blood and urine of African children from owerrimetropolis, eastern Nigeria. J Chem Health Risks 2019;9:11-26.

18. Wirnkor VA, Ngozi VE, Ebere EC, Leizou K, Ndu P. Using physicochemical properties in assessment of river water for consumption and irrigation in Nigeria. Eurasian J Anal Chem 2019;5:14-23. Available from: https://www.researchgate.net/publication/334108536_Using_physicochemical_properties_in_assessment_of_river_water_for_consumption_and_irrigation_in_Nigeria. [Last accessed on 29 Dec 2023]

19. Fred-Ahmadu OH, Bhagwat G, Oluyoye I, Benson NU, Ayejuyo OO, Palanisami T. Interaction of chemical contaminants with microplastics: principles and perspectives. Sci Total Environ 2020;706:135978.

20. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 2018;344:179-99.

21. Schossler P, Schripp T, Salthammer T, Bahadir M. Beyond phthalates: gas phase concentrations and modeled gas/particle distribution of modern plasticizers. Sci Total Environ 2011;409:4031-8.

22. Liu H, Yang X, Liu G, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017;185:907-17.

23. OECD. Complementing document to the emission scenario document on plastic additives: plastic additives during the use of end products. 2019. Available from: https://one.oecd.org/document/ENV/JM/MONO(2019)10/en/pdf. [Last accessed on 29 Dec 2023].

24. Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 2017;182:781-93.

25. Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka M, Watanuki Y. Facilitated leaching of additive-derived PBDEs from plastic by seabirds’ stomach oil and accumulation in tissues. Environ Sci Technol 2015;49:11799-807.

26. Tanaka K, Takada H, Iklenaka Y, Nakayama SMM, Ishizuka M. Occurrence and concentration of chemical additives in plastic fragments on a beach on the island of Kauai, Hawaii. Mar Pollut Bull 2020;150:110732.

27. Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond B Biol Sci 2009;364:2047-62.

28. Golshan M, Hatef A, Socha M, et al. Di-(2-ethylhexyl)-phthalate disrupts pituitary and testicular hormonal functions to reduce sperm quality in mature goldfish. Aquat Toxicol 2015;163:16-26.

29. Jasna ML, Jelena L, Pero T, Dubravka BV, Jasna Š, Joško P. Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia. Mar Pollut Bull 2018;137:231-6.

30. Lohmann R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans - but should microplastics be considered POPs themselves? Integr Environ Assess Manag 2017;13:460-5.

31. Verla AW, Enyoh CE, Verla EN, Nwarnorh KO. Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci 2019;1:1400.

32. Pascall MA, Zabik ME, Zabik MJ, Hernandez RJ. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. J Agric Food Chem 2005;53:164-9.

33. Carpenter EJ, Smith KL Jr. Plastics on the Sargasso sea surface. Science 1972;175:1240-1.

34. Gregory MR. Accumulation and distribution of virgin plastic granules on New Zealand beaches. New Zeal J Mar Fresh Res 1978;12:399-414.

35. Nerland IL, Halsband C, Allan I, Thomas KV. Microplastics in marine environments: occurrence, distribution and effects. 2014. Available from: https://www.miljodirektoratet.no/globalassets/publikasjoner/M319/M319.pdf. [Last accessed on 29 Dec 2023].

36. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 2001;35:318-24.

37. Frias JPGL, Sobral P, Ferreira AM. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 2010;60:1988-92.

38. Rios LM, Moore C, Jones PR. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 2007;54:1230-7.

39. Rochman CM, Hentschel BT, Teh SJ. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 2014;9:e85433.

40. Mohsen M, Wang Q, Zhang L, Sun L, Lin C, Yang H. Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicus from farms in China. Mar Pollut Bull 2019;143:42-9.

41. Holmes LA, Turner A, Thompson RC. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 2014;167:25-32.

42. Wu B, Taylor CM, Knappe DRU, Nanny MA, Barlaz MA. Factors controlling alkylbenzene sorption to municipal solid waste. Environ Sci Technol 2001;35:4569-76.

43. Brennecke D, Duarte B, Paiva F, Caçador I, Canning-clode J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 2016;178:189-95.

44. Chen W, Ouyang ZY, Qian C, Yu HQ. Induced structural changes of humic acid by exposure of polystyrene microplastics: a spectroscopic insight. Environ Pollut 2018;233:1-7.

45. Wei W, Wang C, Shi X, et al. Multiple microplastics induced stress on anaerobic granular sludge and an effectively overcoming strategy using hydrochar. Water Res 2022;222:118895.

46. Ali I, Tan X, Li J, et al. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants - a critical review. J Clean Prod 2022;376:134314.

47. Li WC, Tse HF, Fok L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 2016;566-7:333-49.

48. Pradel A, Ferreres S, Veclin C, et al. Stabilization of fragmental polystyrene nanoplastic by natural organic matter: insight into mechanisms. ACS EST Water 2021;1:1198-208.

49. Fischer AC, Kroon JJ, Verburg TG, Teunissen T, Wolterbeek H. On the relevance of iron adsorption to container materials in small-volume experiments on iron marine chemistry: 55Fe-aided assessment of capacity, affinity and kinetics. Mar Chem 2007;107:533-46.

50. Fotopoulou KN, Karapanagioti HK. Surface properties of beached plastic pellets. Mar Environ Res 2012;81:70-7.

51. Artham T, Sudhakar M, Venkatesan R, Madhavan Nair C, Murty KVGK, Doble M. Biofouling and stability of synthetic polymers in sea water. Int Biodeter Biodegr 2009;63:884-90.

52. Holmes LA, Turner A, Thompson RC. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 2012;160:42-8.

53. Wang F, Zhang M, Sha W, et al. Sorption behavior and mechanisms of organic contaminants to nano and microplastics. Molecules 2020;25:1827.

54. Fred-Ahmadu OH, Ayejuyo OO, Benson NU. Dataset on microplastics and associated trace metals and phthalate esters in sandy beaches of tropical Atlantic ecosystems, Nigeria. Data Brief 2020;31:105755.

55. Hüffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ Pollut 2016;214:194-201.

56. Xu B, Liu F, Brookes PC, Xu J. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ Pollut 2018;240:87-94.

57. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 2017;4:258-67.

58. Loeb GI, Neihof RA. Marine conditioning films. In: Baier RE, editor. Applied chemistry at protein interfaces. Washington: American Chemical Society; 1975. pp. 319-35.

59. Johansen MP, Cresswell T, Davis J, Howard DL, Howell NR, Prentice E. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods. Water Res 2019;158:392-400.

60. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012;2:a012427.

61. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 2014;18:96-104.

62. Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: a food safety concern. Food Control 2013;31:572-85.

63. Richard H. Biofilm facilitates metal accumulation onto new plastic pellets in aquatic environments. 2016. Available from: https://scholarworks.calstate.edu/downloads/z603qz90c. [Last accessed on 29 Dec 2023].

64. Mincer TJ, Zettler ER, Amaral-Zettler LA. Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Takada H, Karapanagioti HK, editors. Hazardous chemicals associated with plastics in the marine environment. Cham: Springer International Publishing; 2019. pp. 221-33.

65. Goss KU, Schwarzenbach RP. Rules of thumb for assessing equilibrium partitioning of organic compounds: successes and pitfalls. J Chem Educ 2003;80:450.

66. Violante A, Pigna M. Sorption-desorption processes of metals and metalloids in soil environments. J Soil Sci Plant Nutr 2008;8:95-101.

67. Teuten EL, Rowland SJ, Galloway TS, Thompson RC. Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 2007;41:7759-64.

68. Awet TT, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur 2018;30:11.

69. Mafuta C, Baker E, Rucevska I, et al. Drowning in plastics: marine litter and plastic waste vital graphics. 2021. Available from: https://policycommons.net/artifacts/2390247/drowning-in-plastics/3411476/. [Last accessed on 29 Dec 2023].

70. Oliveira TMBF, Ribeiro FWP, Morais S, de Lima-Neto P, Correia AN. Removal and sensing of emerging pollutants released from (micro)plastic degradation: strategies based on boron-doped diamond electrodes. Curr Opin Electrochem 2022;31:100866.

71. Tajik S, Beitollahi H, Nejad FG, et al. Recent advances in electrochemical sensors and biosensors for detecting bisphenol A. Sensors 2020;20:3364.

72. Zheng ALT, Andou Y. Detection and remediation of bisphenol A (BPA) using Graphene-based materials: mini-review. Int J Environ Sci Technol 2021;19:6869-88.

73. Jiang L, Santiago I, Foord J. A comparative study of fouling-free nanodiamond and nanocarbon electrochemical sensors for sensitive bisphenol A detection. Carbon 2021;174:390-5.

74. Ali H, Mukhopadhyay S, Jana NR. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. New J Chem 2019;43:1536-43.

75. Wang S, Pan M, Liu K, et al. A SiO2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem 2022;381:132225.

76. Zhang Y, Zhang W, Zhang L, et al. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchem J 2021;170:106737.

77. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts 2013;15:1949-56.

78. Kudo Y, Obayashi K, Yanagisawa H, et al. Development of a screening method for phthalate esters in polymers using a quantitative database in combination with pyrolyzer/thermal desorption gas chromatography mass spectrometry. J Chromatogr A 2019;1602:441-9.

79. Herrera M, Matuschek G, Kettrup A. Fast identification of polymer additives by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 2003;70:35-42.

80. Zhang J, Wang L, Kannan K. Microplastics in house dust from 12 countries and associated human exposure. Environ Int 2020;134:105314.

81. Yanagisawa H, Kudo Y, Nakagawa K, Miyagawa H, Maruyama F, Fujimaki S. Simultaneous screening of major flame retardants and plasticizers in polymer materials using pyrolyzer/thermal desorption gas chromatography mass spectrometry (Py/TD-GC-MS). Molecules 2018;23:728.

82. Hermabessiere L, Receveur J, Himber C, et al. An Irgafos® 168 story: when the ubiquity of an additive prevents studying its leaching from plastics. Sci Total Environ 2020;749:141651.

83. IEC 62321-8:2017. Determination of certain substances in electrotechnical products - Part 8: Phthalates in polymers by gas chromatography-mass spectrometry (GC-MS), gas chromatographymass spectrometry using a pyrolyzer/thermal desorption accessory (Py/TD- GC-MS). Available from: https://webstore.iec.ch/publication/32719. [Last accessed on 29 Dec 2023].

84. Kim JW, Kim YM, Moon HM, et al. Comparative study of thermal desorption and solvent extraction-gas chromatography-mass spectrometric analysis for the quantification of phthalates in polymers. J Chromatogr A 2016;1451:33-40.

85. Wang FC. Polymer additive analysis by pyrolysis-gas chromatography. II. Flame retardants. J Chromatogr A 2000;886:225-35.

86. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut 2014;186:248-56.

87. Šimon P, Rybár M. Kinetics of polymer degradation involving the splitting off of small molecules: Part 8. Thermal degradation of polyvinyl esters. Polym Degrad Stab 1992;38:255-9.

88. Riess M, Thoma H, Vierle O, van Eldik R. Identification of flame retardants in polymers using curie point pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 2000;53:135-48.

89. Rial-Otero R, Galesio M, Capelo JL, Simal-gándara J. A review of synthetic polymer characterization by pyrolysis-GC-MS. Chroma 2009;70:339-48.

90. Yanagisawa H, Maruyama F, Fujimaki S. Verification of simultaneous screening for major restricted additives in polymer materials using pyrolyzer/thermal desorption gas-chromatography mass spectrometry (Py/TD-GC-MS). J Anal Appl Pyrolysis 2019;137:37-42.

91. La Nasa J, Biale G, Sabatini F, Degano I, Colombini MP, Modugno F. Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Herit Sci 2019;7:8.

92. Perlstein P, Orme P. Determination of polymeric hindered-amine light stabilisers in plastics by pyrolysis - gas chromatography. J Chromatogr A 1985;325:87-93.

93. Wang FCY. Polymer additive analysis by pyrolysis-gas chromatography: I. Plasticizers. J Chromatogr A 2000;883:199-210.

94. Lau OW, Wong SK. Contamination in food from packaging material. J Chromatogr A 2000;882:255-70.

95. Peng X, Chen G, Fan Y, et al. Lifetime bioaccumulation, gender difference, tissue distribution, and parental transfer of organophosphorus plastic additives in freshwater fish. Environ Pollut 2021;280:116948.

96. Sridharan S, Kumar M, Saha M, Kirkham MB, Singh L, Bolan NS. The polymers and their additives in particulate plastics: what makes them hazardous to the fauna? Sci Total Environ 2022;824:153828.

97. Schmidt N, Fauvelle V, Ody A, et al. The Amazon river: a major source of organic plastic additives to the tropical North Atlantic? Environ Sci Technol 2019;53:7513-21.

98. Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res 2020;184:116170.

99. Chen S, Xu C, Ma M, et al. Application of solubility parameters in the preparation of PMMA with permanent antistatic, high toughness, and excellent optical properties. Polym Adv Technol 2021;32:3750-8.

100. Costa JC, Oliveira M, Machado AV, Lanceros-Méndez S, Botelho G. Effect of antistatic additives on mechanical and electrical properties of polyethylene foams. J Appl Polym Sci 2009;112:1595-600.

101. Ruthven DM. Principles of adsorption and adsorption processes. 1984. Available from: https://www.wiley.com/en-us/Principles+of+Adsorption+and+Adsorption+Processes-p-9780471866060. [Last accessed on 29 Dec 2023]

102. Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut 2013;178:483-92.

103. Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R. Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut Res Int 2013;20:8057-76.

104. Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 2015;49:4019-35.

105. Cuvillier-Hot V, Gaudron SM, Massol F, et al. Immune failure reveals vulnerability of populations exposed to pollution in the bioindicator species Hediste diversicolor. Sci Total Environ 2018;613-4:1527-42.

106. Nurulnadia MY, Koyama J, Uno S, et al. Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo River mouth, Osaka Bay, Japan. Environ Monit Assess 2014;186:1453-63.

107. Gandara e Silva PP, Nobre CR, Resaffe P, Pereira CDS, Gusmão F. Leachate from microplastics impairs larval development in brown mussels. Water Res 2016;106:364-70.

108. Bejgarn S, MacLeod M, Bogdal C, Breitholtz M. Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 2015;132:114-9.

109. Lithner D, Damberg J, Dave G, Larsson Å. Leachates from plastic consumer products - screening for toxicity with Daphnia magna. Chemosphere 2009;74:1195-200.

110. Shin PKS, Gopalakrishnan S, Chan AKY, Qian PY, Wu RSS. Interactive effects of hypoxia and PBDE on larval settlement of a marine benthic polychaete. Mar Pollut Bull 2014;85:425-32.

111. Setälä O, Norkko J, Lehtiniemi M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 2016;102:95-101.

112. Díaz-Jaramillo M, Miglioranza KSB, Gonzalez M, et al. Uptake, metabolism and sub-lethal effects of BDE-47 in two estuarine invertebrates with different trophic positions. Environ Pollut 2016;213:608-17.

113. Lithner D, Nordensvan I, Dave G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res Int 2012;19:1763-72.

114. Zhao H, Zhou Y, Li Y, Li S, Yang D. Molecular cloning and expression of the gene for G protein alpha subunit induced by bisphenol A in marine polychaete Perinereis aibuhitensis. Environ Toxicol Pharmacol 2014;37:521-8.

115. Hamlin HJ, Marciano K, Downs CA. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani. Chemosphere 2015;139:223-8.

116. Green DS, Boots B, Sigwart J, Jiang S, Rocha C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 2016;208:426-34.

117. Lu Y, Lin M, Aitken RJ. Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). Aquat Toxicol 2017;191:189-200.

118. Gomiero A, Strafella P, Pellini G, Salvalaggio V, Fabi G. Comparative effects of ingested PVC micro particles with and without adsorbed benzo(a)pyrene vs. spiked sediments on the cellular and sub cellular processes of the benthic organism Hediste diversicolor. Front Mar Sci 2018;5:99.

119. Gebhardt C, Forster S. Size-selective feeding of Arenicola marina promotes long-term burial of microplastic particles in marine sediments. Environ Pollut 2018;242:1777-86.

120. Klosterhaus SL, Dreis E, Baker JE. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens. Environ Toxicol Chem 2011;30:1204-12.

121. Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res 2020;169:115270.

122. Gao DW, Wen ZD. Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 2016;541:986-1001.

123. Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 2016;153:91-9.

124. Shaw JR, Pfrender ME, Eads BD, et al. Daphnia as an emerging model for toxicological genomics. Adv Exp Med Biol 2008;2:327-8.

125. Seyoum A, Pradhan A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci Total Environ 2019;654:969-77.

126. Blinova I, Lukjanova A, Vija H, Mortimer M, Heinlaan M. Toxicity of plastic additive 1-hydroxycyclohexyl phenyl ketone (1-HCHPK) to freshwater microcrustaceans in natural water. Water 2023;15:3213.

127. Murugan G, Dumont HJ. Influence of light, DMSO and glycerol on the hatchability of Thamnocephalus platyurus Packard cysts. In: Belk D, Dumont HJ, Maier G, editors. Studies on large branchiopod biology and aquaculture II. Dordrecht: Springer Netherlands; 1995. pp. 175-8.

128. Zhang X, Liu L, Zhang S, et al. Biodegradation of dimethyl phthalate by freshwater unicellular cyanobacteria. BioMed Res Int 2016;2016:5178697.

129. Billings A, Jones KC, Pereira MG, Spurgeon DJ. Plasticisers in the terrestrial environment: sources, occurrence and fate. Environ Chem 2021;18:111-30.

130. Kong S, Ji Y, Liu L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollut 2012;170:161-8.

131. Zeng LJ, Huang YH, Chen XT, et al. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Sci Total Environ 2020;743:140755.

132. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017;586:127-41.

133. CEFIC. Plasticisers fact sheet. Available from: https://www.plasticisers.org/wp-content/uploads/2019/08/Plasticisers_Factsheet_EN_MAY2020.pdf. [Last accessed on 29 Dec 2023].

134. Billings A, Carter H, Cross RK, Jones KC, Pereira MG, Spurgeon DJ. Co-occurrence of macroplastics, microplastics, and legacy and emerging plasticisers in UK soils. Sci Total Environ 2023;880:163258.

135. Adibi JJ, Perera FP, Jedrychowski W, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect 2003;111:1719-22.

136. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 2003;37:4543-53.

137. Sathyanarayana S. Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 2008;38:34-49.

138. Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect 2003;111:1783-5.

139. Main KM, Mortensen GK, Kaleva MM, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 2006;114:270-6.

140. Colón I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 2000;108:895-900.

141. Bornehag CG, Sundell J, Weschler CJ, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect 2004;112:1393-7.

142. Factor A. Mechanisms of thermal and photodegradations of bisphenol A polycarbonate. In: Clough RL, Billingham NC, Gillen KT, editors. Polymer durability. Washington: American Chemical Society; 1996. pp. 59-76.

143. Bae B, Jeong JH, Lee SJ. The quantification and characterization of endocrine disruptor bisphenol-A leaching from epoxy resin. Water Sci Technol 2002;46:381-7.

144. Brede C, Fjeldal P, Skjevrak I, Herikstad H. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam 2003;20:684-9.

145. Kang JH, Kito K, Kondo F. Factors influencing the migration of bisphenol A from cans. J Food Prot 2003;66:1444-7.

146. Sasaki N, Okuda K, Kato T, et al. Salivary bisphenol-A levels detected by ELISA after restoration with composite resin. J Mater Sci Mater Med 2005;16:297-300.

147. Richter CA, Birnbaum LS, Farabollini F, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007;24:199-224.

148. Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod 2005;20:2325-9.

149. Takeuchi T, Tsutsumi O. Serum bisphenol A concentrations showed gender differences, possibly linked toandrogen levels. Biochem Biophys Res Commun 2002;291:76-8.

150. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y. Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004;51:165-9.

151. Pohl HR, Bosch S, Amata R, Eisenmann CJ. Toxicological profile for polybrominated biphenyls and polybrominated diphenyl ethers. Atlanta,GA: Agency for Toxic Substances and Disease Registry. 2004. Available from: https://stacks.cdc.gov/view/cdc/6740. [Last accessed on 29 Dec 2023].

152. Hagmar L, Bjork J, Sjodin A, Bergman A, Erfurth EM. Plasma levels of persistent organohalogensand hormone levels in adult male humans. Arch Environ Health 2001;56:138-43. Available from: https://www.proquest.com/openview/1e3df4bd68adccfe0d26c318d3acd70c/1?pq-origsite=gscholar&cbl=28654. [Last accessed on 29 Dec 2023].

153. Zhou C, Wu J, Ma W, et al. Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: toxicity, microbial community and functional genes. J Hazard Mater 2022;432:128715.

154. Lee J, Jeong S, Long C, Chandran K. Size dependent impacts of a model Microplastic on nitrification induced by interaction with nitrifying bacteria. J Hazard Mater 2022;424:127363.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/