REFERENCES

1. Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 2014;187:193-201.

2. de Carvalho Hessel Dias VM, Tuon F, de Jesus Capelo P, Telles JP, Fortaleza CMCB, Pellegrino Baena C. Trend analysis of carbapenem-resistant Gram-negative bacteria and antimicrobial consumption in the post-COVID-19 era: an extra challenge for healthcare institutions. J Hosp Infect 2022;120:43-7.

3. Eniola JO, Kumar R, Barakat M, Rashid J. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. J Clean Prod 2022;356:131826.

4. Zhang X, Wang H, Gao M, et al. Template-directed synthesis of pomegranate-shaped zinc oxide@zeolitic imidazolate framework for visible light photocatalytic degradation of tetracycline. Chemosphere 2022;294:133782.

5. Liu JL, Wong MH. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 2013;59:208-24.

6. Li G, Nie X, Gao Y, An T. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation? - Implications of persistent toxic intermediates. Appl Catal B Environ 2016;180:726-32.

7. Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 2009;43:4070-8.

8. Awual MR, Hasan MM. A ligand based innovative composite material for selective lead(II) capturing from wastewater. J Mol Liq 2019;294:111679.

9. Salman MS, Sheikh MC, Hasan MM, et al. Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl Surf Sci 2023;622:157008.

10. Awual MR, Hasan MM, Khaleque MA, Sheikh MC. Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chem Eng J 2016;288:368-76.

11. Biswas S, Pal A. A brief review on the latest developments on pharmaceutical compound degradation using g-C3N4-based composite catalysts. Catalysts 2023;13:925.

12. Ghosh U, Pal A. Graphitic carbon nitride based Z scheme photocatalysts: design considerations, synthesis, characterization and applications. J Ind Eng Chem 2019;79:383-408.

13. Song T, Kang C, Gao Y. Photo catalytic degradation of tetracycline by TiO2 nanotubes electrode. J Nanoelectron Optoelectron 2017;12:1374-8.

14. Sinha AK, Sasmal AK, Pal A, Pal D, Pal T. Ammonium phosphomolybdate [(NH4)3PMo12O40] an inorganic ion exchanger for environmental application for purification of dye contaminant wastewater. J Photochem Photobiol A Chem 2021;418:113427.

15. Yu L, Ding Y, Zheng M. Polyoxometalate-based manganese clusters as catalysts for efficient photocatalytic and electrochemical water oxidation. Appl Catal B Environ 2017;209:45-52.

16. Cai Q, Hu J. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. J Hazard Mater 2017;323:527-36.

17. Kamiya Y, Sadakane M, Ueda W. 7.08 - Heteropoly compounds. Compr Inorg Chem II 2013;7:185-204.

18. Omwoma S, Chen W, Tsunashima R, Song Y. Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord Chem Rev 2014;258-9:58-71.

19. Antonello A, Benedetti C, Pérez-Pla FF, et al. Colloidally confined crystallization of highly efficient ammonium phosphomolybdate catalysts. ACS Appl Mater Interfaces 2018;10:23174-86.

20. Qiao Y, Hua L, Chen J, Theyssen N, Leitner W, Hou Z. The cooperative role of zwitterions and phosphotungstate anion in epoxidation reaction. J Mol Catal A Chem 2013;380:43-8.

21. Ghalebi H, Aber S, Karimi A. Keggin type of cesium phosphomolybdate synthesized via solid-state reaction as an efficient catalyst for the photodegradation of a dye pollutant in aqueous phase. J Mol Catal A Chem 2016;415:96-103.

22. Wang J, Chen Y, Cheng N, Feng L, Gu BH, Liu Y. Multivalent supramolecular self-assembly between β-cyclodextrin derivatives and polyoxometalate for photodegradation of dyes and antibiotics. ACS Appl Bio Mater 2019;2:5898-904.

23. Basu M, Sarkar S, Pande S, et al. Hydroxylation of benzophenone with ammonium phosphomolybdate in the solid state via UV photoactivation. Chem Commun 2009:7191-3.

24. Renneke RF, Pasquali M, Hill CL. Polyoxometalate systems for the catalytic selective production of nonthermodynamic alkenes from alkanes. Nature of excited-state deactivation processes and control of subsequent thermal processes in polyoxometalate photoredox chemistry. J Am Chem Soc 1990;112:6585-94.

25. Hua L, Qiao Y, Yu Y, et al. A Ti-substituted polyoxometalate as a heterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide. New J Chem 2011;35:1836-41.

26. Katsoulis DE. A survey of applications of polyoxometalates. Chem Rev 1998;98:359-88.

27. Rhule JT, Hill CL, Judd DA, Schinazi RF. Polyoxometalates in medicine. Chem Rev 1998;98:327-58.

28. Hasenknopf B. Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci 2005;10:275-87.

29. Yamase T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 2005;15:4773-82.

30. Hou J, Wang C, Mao D, Luo Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environ Sci Pollut Res Int 2016;23:1722-31.

31. Antonopoulou M, Kosma C, Albanis T, Konstantinou I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci Total Environ 2021;765:144163.

32. Dai Y, Liu M, Li J, et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep Sci Technol 2020;55:1005-21.

33. Javid A, Mesdaghinia A, Nasseri S, Mahvi AH, Alimohammadi M, Gharibi H. Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. J Environ Health Sci Eng 2016;14:4.

34. Khachatourians GG. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Cmaj 1998;159:1129-36.

35. Slots J, Ting M. Systemic antibiotics in the treatment of periodontal disease. Periodontol 2000 2002;28:106-76.

36. Gustafson RH, Bowen RE. Antibiotic use in animal agriculture. J Appl Microbiol 1997;83:531-41.

37. Majumdar A, Pal A. Recent advancements in visible-light-assisted photocatalytic removal of aqueous pharmaceutical pollutants. Clean Techn Environ Policy 2020;22:11-42.

38. Lood R, Ertürk G, Mattiasson B. Revisiting antibiotic resistance spreading in wastewater treatment plants - bacteriophages as a much neglected potential transmission vehicle. Front Microbiol 2017;8:2298.

39. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005;36:697-705.

40. Saxena J, Sharma PK, Sharma MM, Singh A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Springerplus 2016;5:861.

41. Anning AS, Baah E, Buabeng SD, et al. Prevalence and antimicrobial resistance patterns of microbes isolated from individuals attending private diagnostic centre in Cape Coast Metropolis of Ghana. Sci Rep 2022;12:14282.

42. Afroz M, Akter S, Ahmed A, et al. Ethnobotany and antimicrobial peptides from plants of the solanaceae family: an update and future prospects. Front Pharmacol 2020;11:565.

43. Esiobu N, Armenta L, Ike J. Antibiotic resistance in soil and water environments. Int J Environ Health Res 2002;12:133-44.

44. Li G, Wu L, Li F, Xu P, Zhang D, Li H. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 2013;5:2118-25.

45. Pawar RC, Khare V, Lee CS. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans 2014;43:12514-27.

46. Li Q, Li X, Wageh S, Al-ghamdi AA, Yu J. CdS/graphene nanocomposite photocatalysts. Adv Energy Mater 2015;5:1500010.

47. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001;293:269-71.

48. Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 2012;125:331-49.

49. Fiorenza R, Di Mauro A, Cantarella M, et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chem Eng J 2020;379:122309.

50. Zhang AY, Wang WK, Pei DN, Yu HQ. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res 2016;92:78-86.

51. Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 2016;88:428-48.

52. Raha S, Ahmaruzzaman M. Facile fabrication of g-C3N4 supported Fe3O4 nanoparticles/ZnO nanorods: a superlative visible light responsive architecture for express degradation of pantoprazole. Chem Eng J 2020;387:123766.

53. Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Res 2021;188:116543.

54. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev 1995;95:69-96.

55. Talaiekhozani A, Rezania S, Kim K, Sanaye R, Amani AM. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. J Clean Prod 2021;278:123895.

56. Wang C, Li J, Lv X, Zhang Y, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 2014;7:2831-67.

57. Zhang H, Chen G, Bahnemann DW. Photoelectrocatalytic materials for environmental applications. J Mater Chem 2009;19:5089-121.

58. Daghrir R, Drogui P, Robert D. Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A Chem 2012;238:41-52.

59. Chen J, Ma Y, Zhang D, et al. Ion-pairs of structurally related polyoxotantalate clusters and divalent metal cations. J Coord Chem 2020;73:2579-89.

60. Tucher J, Wu Y, Nye LC, Ivanovic-Burmazovic I, Khusniyarov MM, Streb C. Metal substitution in a Lindqvist polyoxometalate leads to improved photocatalytic performance. Dalton Trans 2012;41:9938-43.

61. Clemente-Juan JM, Coronado E, Gaita-Ariño A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem Soc Rev 2012;41:7464-78.

62. Martin NP, Nyman M. Directional bonding in decaniobate inorganic frameworks. Angew Chem Int Ed Engl 2021;60:954-60.

63. Li Q, Wei Y. A series of unprecedented triol-stabilized [H3MW6O24]n-: the missing piece between A- and B-type anderson-evans polyoxometalates. Chem Commun 2018;54:1375-8.

64. Adonin SA, Izarova NV, Besson C, et al. An IrIV-containing polyoxometalate. Chem Commun 2015;51:1222-5.

65. Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem Rev 1998;98:77-112.

66. Liang Z, Li T, Zhang L, Zheng L, Jia W, Mao Q. Synthesis and characterization of two hexacopper-capped Keggin-type polyoxoniobates. Inorg Chem Commun 2020;116:107895.

67. Xin F, Pope MT. Polyoxometalate derivatives with multiple organic groups. 1. Synthesis and structures of tris(organotin) .beta.-Keggin and .alpha.-Dawson tungstophosphates. Organometallics 1994;13:4881-6.

68. Qi W, Wang Y, Li W, Wu L. Surfactant-encapsulated polyoxometalates as immobilized supramolecular catalysts for highly efficient and selective oxidation reactions. Chemistry 2010;16:1068-78.

69. Li H, Sun H, Qi W, Xu M, Wu L. Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew Chem Int Ed Engl 2007;46:1300-3.

70. Wang X, Sun J, Lin H, Chang Z, Liu G, Wang X. A series of novel Anderson-type polyoxometalate-based MnII complexes constructed from pyridyl-derivatives: assembly, structures, electrochemical and photocatalytic properties. CrystEngComm 2017;19:3167-77.

71. Zhao J, Zhang J, Li Y, Cao J, Chen L. Novel one-dimensional organic-inorganic polyoxometalate hybrids constructed from heteropolymolybdate units and copper-aminoacid complexes. Cryst Growth Des 2014;14:1467-75.

72. Blazevic A, Rompel A. The Anderson-Evans polyoxometalate: from inorganic building blocks via hybrid organic-inorganic structures to tomorrows “Bio-POM”. Coord Chem Rev 2016;307:42-64.

73. Li Q, Zhang L, Dai J, et al. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem Eng J 2018;351:441-61.

74. Ayass WW, Fodor T, Farkas E, et al. Dithallium(III)-Containing 30-Tungsto-4-phosphate, [Tl2Na2(H2O)2(P2W15O56)2]16-: synthesis, structural characterization, and biological studies. Inorg Chem 2018;57:7168-79.

75. Zang D, Huang Y, Li Q, Tang Y, Wei Y. Cu dendrites induced by the Anderson-type polyoxometalate NiMo6O24 as a promising electrocatalyst for enhanced hydrogen evolution. Appl Catal B Environ 2019;249:163-71.

76. Wu P, Wang Y, Chen W, Hu X, Huang B, Xiao Z. Structural and magnetical studies of mixed-valence hexavanadate hybrids: how organic ligands affect the magnetism of polyoxometalates? Inorg Chem 2021;60:4347-51.

77. Fujimoto S, Cameron JM, Wei RJ, et al. A simple approach to the visible-light photoactivation of molecular metal oxides. Inorg Chem 2017;56:12169-77.

78. Beni F, Gholami A, Ayati A, Niknam Shahrak M, Sillanpää M. UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Micropor Mesopor Mat 2020;303:110275.

79. Shi H, Jin T, Li J, et al. Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation. J Solid State Chem 2022;311:123069.

80. Yin S, Wang J, Tong Q, et al. Degradation of ciprofloxacin with hydrogen peroxide catalyzed by ironmolybdate-based zeolitic octahedral metal oxide. Appl Catal A General 2021;626:118375.

81. Xu L, Wang G, Ma F, et al. Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites. Appl Surf Sci 2012;258:7039-46.

82. Wang JL, Xu LJ. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 2012;42:251-325.

83. Zhao X, Wang X, Zhao Y, et al. Polyoxometalates-doped TiO2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation. Environ Sci Nano 2021;8:3855-64.

84. Marcì G, García-lópez EI, Palmisano L. Heteropolyacid-based materials as heterogeneous photocatalysts. Eur J Inorg Chem 2014;2014:21-35.

85. Graber EM. Treating acne with the tetracycline class of antibiotics: a review. Dermatol Rev 2021;2:321-30.

86. Shi H, Zhao T, Wang J, et al. Fabrication of g-C3N4/PW12/TiO2 composite with significantly enhanced photocatalytic performance under visible light. J Alloy Compd 2021;860:157924.

87. Cheng P, Wang Y, Sarakha M, Mailhot G. Enhancement of the photocatalytic activity of decatungstate, W10O324-, for the oxidation of sulfasalazine/sulfapyridine in the presence of hydrogen peroxide. J Photochem Photobiol A Chem 2021;404:112890.

88. Brahmi C, Benltifa M, Ghali M, et al. Performance improvement of the photocatalytic process for the degradation of pharmaceutical compounds using new POM/polymer photocatalysts. J Environ Chem Eng 2021;9:106015.

89. Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater 2011;192:44-53.

90. Pal D, Pal T, Pal A. Microporous ammonium phosphomolybdate as a catalyst for oxidative degradation of tetracycline under ambient condition: reaction mechanisms and pathways. Catal Commun 2023;181:106730.

91. Sun P, Zhou S, Yang Y, et al. Artificial chloroplast-like phosphotungstic acid - iron oxide microbox heterojunctions penetrated by carbon nanotubes for solar photocatalytic degradation of tetracycline antibiotics in wastewater. Adv Compos Hybrid Mater 2022;5:3158-75.

92. Heng S, Song Q, Liu S, et al. Construction of 2D polyoxoniobate/RGO heterojunction photocatalysts for the enhanced photodegradation of tetracycline. Appl Surf Sci 2021;553:149505.

93. Yang G, Liang Y, Zheng H, Zhang X, Jia J. Fe-polyoxometalate nanodots decorated Bi2MoO6 nanosheets with dominant {010} facets for photo-Fenton degradation of antibiotics over a wide pH range: mechanism insight and toxicity assessment. Sep Purif Technol 2023;310:123167.

94. Zhu L, Yang F, Lin X, et al. Highly efficient catalysts of polyoxometalates supported on biochar for antibiotic wastewater treatment: performance and mechanism. Process Saf Environ 2023;172:425-36.

95. Shi H, Zhu H, Jin T, et al. Construction of Bi/Polyoxometalate doped TiO2 composite with efficient visible-light photocatalytic performance: mechanism insight, degradation pathway and toxicity evaluation. Appl Surf Sci 2023;615:156310.

96. Guo KK, Yang YL, Dong SM, Li FY, Jiang XY, Xu L. Decomposition-reassembly synthesis of a silverton-type polyoxometalate 3D framework: semiconducting properties and photocatalytic applications. Inorg Chem 2022;61:6411-20.

97. Lan Q, Jin S, Yang B, et al. Filling polyoxoanions into MIL-101(Fe) for adsorption of organic pollutants with facile and complete visible light photocatalytic decomposition. Molecules 2022;27:3404.

98. Liu B, Teng Y, Zhang X, Pan S, Wu H. Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system. Sep Purif Technol 2022;288:120594.

99. Zhang YM, An CW, Zhang DF, Liu T, Yan JS, Zhang J. Photocatalytic activity of vanadium-substituted polyoxometalate doped magnetic carbon nitride towards antibiotics. Russ J Inorg Chem 2021;66:679-83.

100. Saghi M, Mahanpoor K. Photocatalytic degradation of tetracycline aqueous solutions by nanospherical α-Fe2O3 supported on 12-tungstosilicic acid as catalyst: using full factorial experimental design. Int J Ind Chem 2017;8:297-313.

101. Mahmoodi M, Rafiee E, Eavani S. Photocatalytic removal of toxic dyes, liquorice and tetracycline wastewaters by a mesoporous photocatalyst under irradiation of different lamps and sunlight. J Environ Manage 2022;313:115023.

102. Jiang J, Wang X, Liu Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment. Appl Catal B Environ 2020;278:119349.

103. Xing C, Ma M, Chang J, et al. Polyoxometalate anchored zinc oxide nanocomposite as a highly effective photocatalyst and bactericide for wastewater decontamination. Chem Eng J 2023;464:142632.

104. Wang R, Su S, Ren X, Guo W. Polyoxometalate intercalated La-doped NiFe-LDH for efficient removal of tetracycline via peroxymonosulfate activation. Sep Purif Technol 2021;274:119113.

105. Wu C, Xing Z, Fang B, Cui Y, Li Z, Zhou W. Polyoxometalate-based yolk@shell dual Z-scheme superstructure tandem heterojunction nanoreactors: encapsulation and confinement effects. J Mater Chem A 2022;10:180-91.

106. Ji Y, Ma C, Li J, et al. A magnetic adsorbent for the removal of cationic dyes from wastewater. Nanomaterials 2018;8:710.

107. Ashrafi M, Farhadi S. Polyoxometalate supported on a magnetic Fe3O4/MIL-88A rod-like nanocomposite as an adsorbent for the removal of ciprofloxacin, tetracycline and cationic organic dyes from aqueous solutions. RSC Adv 2023;13:6356-67.

108. He R, Xue K, Wang J, et al. Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P-N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin. Chemosphere 2020;259:127465.

109. Søeborg T, Ingerslev F, Halling-Sørensen B. Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water. Chemosphere 2004;57:1515-24.

110. Xiong T, Cen W, Zhang Y, Dong F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal 2016;6:2462-72.

111. Septian A, Oh S, Shin WS. Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling. Environ Technol 2019;40:2940-53.

112. Wu J, Wu D, Peng W, Ji Y, Tong H. Research progress of polyoxometalates photocatalyst for degradation of organic wastewater. ACE 2022;5:92-106.

113. Wang J, Wang S. Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol 2018;102:3573-82.

114. Zhang Y, Li Y, Yuan Y, Lin K. C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: reaction kinetics, DFT calculation and mechanism insight. Sep Purif Technol 2022;295:121268.

115. Zhang Y, Li Y, Yuan Y. Enhanced sulfamethoxazole photodegradation by N-SrTiO3/NH4V4O10 S-scheme photocatalyst: DFT calculation and photocatalytic mechanism insight. J Colloid Interface Sci 2023;645:860-9.

116. Liu C, Xu J, Niu J, Chen M, Zhou Y. Direct Z-scheme Ag3PO4/Bi4Ti3O12 heterojunction with enhanced photocatalytic performance for sulfamethoxazole degradation. Sep Purif Technol 2020;241:116622.

117. Wang Q, Wang D, Wu Y, Li L, Sun X. Synthesis of polyoxometalate-based complexes and photocatalytic degradation of metronidazole. J Solid State Chem 2022;309:122966.

118. Wang Q, Mao L, Wang D, Ma Y, Shi X, Tian X. Construction of two new polyoxometalate complexes and their recyclability in photodegradation of cephalexin and ceftiofur. Inorganica Chimica Acta 2022;536:120902.

119. Li G, Zhang K, Li C, et al. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Appl Catal B Environ 2019;245:753-9.

120. Selvakumar K, Oh TH, Vijayaraj T, Gokul Raja K, Swaminathan M. Facile construction of sandwich-like composited Sm2MoO6/ZnO/rGO and its activity in photodecomposition of ibuprofen. Colloid Surfaces A 2022;650:129545.

121. Yang X, Xie X, Li S, et al. The POM@MOF hybrid derived hierarchical hollow Mo/Co bimetal oxides nanocages for efficiently activating peroxymonosulfate to degrade levofloxacin. J Hazard Mater 2021;419:126360.

122. Bastami TR, Ahmadpour A. Preparation of magnetic photocatalyst nanohybrid decorated by polyoxometalate for the degradation of a pharmaceutical pollutant under solar light. Environ Sci Pollut Res Int 2016;23:8849-60.

123. Aureliano M. The future is bright for polyoxometalates. BioChem 2022;2:8-26.

124. Recepoglu YK, Goren AY, Orooji Y, Vatanpour V, Kudaibergenov N, Khataee A. Polyoxometalate-based hybrid composites in multi-functional wastewater treatment applications. J Water Process Eng 2023;53:103863.

125. D’cruz B, Amin MO, Al-hetlani E. Polyoxometalate-based materials for the removal of contaminants from wastewater: a review. Ind Eng Chem Res 2021;60:10960-77.

126. Lan J, Wang Y, Huang B, Xiao Z, Wu P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv 2021;3:4646-58.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/