REFERENCES

1. Yao Z, Seong HJ, Jang YS. Environmental toxicity and decomposition of polyethylene. Ecotoxicol Environ Saf 2022;242:113933.

2. Nguyen HV, Le MTT, Do LT. Intrinsic motivation for reducing single-use plastics: The compensation effects of basic psychological needs. Resour Conserv Recycl 2022;185:106482.

3. Ahmad M, Chen J, Khan MT, et al. Sources, analysis, and health implications of atmospheric microplastics. Emerg Contam 2023;9:100233.

4. Munyaneza J, Hossain MF, Jia Q, Duan Y, Xiu G. Space-time characteristics of 16 PM2.5-bound phthalates (PAEs) in ambient air from shanghai: profiles, sources, meteorological effects, and exposure risks. Aerosol Air Qual Res 2023;23:220465.

5. Jiang H, Luo D, Wang L, Zhang Y, Wang H, Wang C. A review of disposable facemasks during the COVID-19 pandemic: a focus on microplastics release. Chemosphere 2023;312:137178.

6. Khan MT, Shah IA, Hossain MF, et al. Personal protective equipment (PPE) disposal during COVID-19: an emerging source of microplastic and microfiber pollution in the environment. Sci Total Environ 2023;860:160322.

7. Chen Z, Liu J, Chen C, Huang Z. Sedimentation of nanoplastics from water with Ca/Al dual flocculants: characterization, interface reaction, effects of pH and ion ratios. Chemosphere 2020;252:126450.

8. Khan MT, Cheng YL, Hafeez S, Tsang YF, Yang J, Nawab A. Microplastics in wastewater. In: Rocha-santos T, Costa M, Mouneyrac C, editors. Handbook of microplastics in the environment. Cham: Springer; 2020. p. 1-33.

9. Lu Y, Li MC, Lee J, Liu C, Mei C. Microplastic remediation technologies in water and wastewater treatment processes: current status and future perspectives. Sci Total Environ 2023;868:161618.

10. Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: where is all the plastic? Science 2004;304:838.

11. Amobonye A, Bhagwat P, Raveendran S, Singh S, Pillai S. Environmental impacts of microplastics and nanoplastics: a current overview. Front Microbiol 2021;12:768297.

12. Munyaneza J, Jia Q, Qaraah FA, et al. A review of atmospheric microplastics pollution: in-depth sighting of sources, analytical methods, physiognomies, transport and risks. Sci Total Environ 2022;822:153339.

13. Zhang Y, Wang X, Li Y, et al. Improving nanoplastic removal by coagulation: impact mechanism of particle size and water chemical conditions. J Hazard Mater 2022;425:127962.

14. Talvitie J, Mikola A, Koistinen A, Setälä O. Solutions to microplastic pollution - removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res 2017;123:401-7.

15. Zhou G, Wang Q, Li J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: performance and mechanism. Sci Total Environ 2021;752:141837.

16. Tofa TS, Kunjali KL, Paul S, Dutta J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ Chem Lett 2019;17:1341-6.

17. Rajala K, Grönfors O, Hesampour M, Mikola A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res 2020;183:116045.

18. Perren W, Wojtasik A, Cai Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega 2018;3:3357-64.

19. Sharma S, Basu S, Shetti NP, Nadagouda MN, Aminabhavi TM. Microplastics in the environment: occurrence, perils, and eradication. Chem Eng J 2021;408:127317.

20. Ma B, Xue W, Ding Y, Hu C, Liu H, Qu J. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J Environ Sci 2019;78:267-75.

21. Lapointe M, Farner JM, Hernandez LM, Tufenkji N. Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation. Environ Sci Technol 2020;54:8719-27.

22. Zhang Y, Diehl A, Lewandowski A, Gopalakrishnan K, Baker T. Removal efficiency of micro- and nanoplastics (180nm-125μm) during drinking water treatment. Sci Total Environ 2020;720:137383.

23. Oriekhova O, Stoll S. Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: importance of pH and colloid surface charge. Colloids Surf A Physicochem Eng Asp 2014;461:212-9.

24. Guo Y, Kong F, Fatehi P. Generation and use of lignin-g-AMPS in extended DLVO theory for evaluating the flocculation of colloidal particles. ACS Omega 2020;5:21032-41.

25. Ali I, Tan X, Xie Y, et al. Recent innovations in microplastics and nanoplastics removal by coagulation technique: implementations, knowledge gaps and prospects. Water Res 2023;245:120617.

26. Xu Q, Huang Q, Luo T, Wu R, Wei W, Ni B. Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem Eng J 2021;416:129123.

27. Ihsanullah I, Khan MT, Zubair M, Bilal M, Sajid M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: a review. Chemosphere 2022;289:133196.

28. Talvitie J, Heinonen M, Pääkkönen JP, et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci Technol 2015;72:1495-504.

29. Xue J, Peldszus S, Van Dyke MI, Huck PM. Removal of polystyrene microplastic spheres by alum-based coagulation-flocculation-sedimentation (CFS) treatment of surface waters. Chem Eng J 2021;422:130023.

30. Wang Z, Lin T, Chen W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci Total Environ 2020;700:134520.

31. Pivokonský M, Pivokonská L, Novotná K, Čermáková L, Klimtová M. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Sci Total Environ 2020;741:140236.

32. Cherniak SL, Almuhtaram H, McKie MJ, et al. Conventional and biological treatment for the removal of microplastics from drinking water. Chemosphere 2022;288:132587.

33. Dalmau-Soler J, Ballesteros-Cano R, Boleda MR, Paraira M, Ferrer N, Lacorte S. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ Sci Pollut Res Int 2021;28:59462-72.

34. Hidayaturrahman H, Lee TG. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull 2019;146:696-702.

35. Ruan Y, Zhang K, Wu C, Wu R, Lam PKS. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants. Sci Total Environ 2019;674:171-8.

36. Wang X, Song H, Liu Y, et al. Quantitively analyzing the variation of micrometer-sized microplastic during water treatment with the flow cytometry-fluorescent beads method. ACS EST Eng 2021;1:1668-77.

37. Esfandiari A, Mowla D. Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Saf Environ Prot 2021;151:341-54.

38. Lee CS, Robinson J, Chong MF. A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 2014;92:489-508.

39. Xu B, Ye T, Li DP, et al. Measurement of dissolved organic nitrogen in a drinking water treatment plant: size fraction, fate, and relation to water quality parameters. Sci Total Environ 2011;409:1116-22.

40. Ma B, Xue W, Hu C, Liu H, Qu J, Li L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J 2019;359:159-67.

41. Shahi NK, Maeng M, Kim D, Dockko S. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand. Process Saf Environ Prot 2020;141:9-17.

42. Zhang Y, Zhou G, Yue J, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids. Sci Total Environ 2021;800:149589.

43. Gent M, Sierra HM, Álvarez MM, McCulloch J. An evaluation of hydrocyclones and the LARCODEMS cylindrical cyclone for the separation of waste plastics of proximate densities. Waste Manag 2018;79:374-84.

44. Senfter T, Fritsch L, Berger M, et al. Sludge thickening in a wastewater treatment plant using a modified hydrocyclone. Carbon Resour Convers 2021;4:132-41.

45. Khatri N, Khatri KK, Sharma A. Enhanced energy saving in wastewater treatment plant using dissolved oxygen control and hydrocyclone. Environ Technol Innov 2020;18:100678.

46. Kikuchi R, Kukacka J, Raschman R. Grouping of mixed waste plastics according to chlorine content. Sep Purif Technol 2008;61:75-81.

47. Liu L, Sun Y, Kleinmeyer Z, et al. Microplastics separation using stainless steel mini-hydrocyclones fabricated with additive manufacturing. Sci Total Environ 2022;840:156697.

48. He J, Zhang Y, Ni F, et al. Understanding and characteristics of coagulation removal of composite pollution of microplastic and norfloxacin during water treatment. Sci Total Environ 2022;831:154826.

49. Xia Y, Xiang XM, Dong KY, Gong YY, Li ZJ. Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging. Sci Total Environ 2020;729:138783.

50. Adib D, Mafigholami R, Tabeshkia H, Walker TR. Optimization of polypropylene microplastics removal using conventional coagulants in drinking water treatment plants via response surface methodology. J Environ Health Sci Eng 2022;20:565-77.

51. Skaf DW, Punzi VL, Rolle JT, Kleinberg KA. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem Eng J 2020;386:123807.

52. Na SH, Kim MJ, Kim JT, et al. Microplastic removal in conventional drinking water treatment processes: performance, mechanism, and potential risk. Water Res 2021;202:117417.

53. Li C, Busquets R, Moruzzi RB, Campos LC. Preliminary study on low-density polystyrene microplastics bead removal from drinking water by coagulation-flocculation and sedimentation. J Water Process Eng 2021;44:102346.

54. Monira S, Bhuiyan MA, Haque N, Pramanik BK. Assess the performance of chemical coagulation process for microplastics removal from stormwater. Process Saf Environ Protect 2021;155:11-6.

55. Zhang Y, Zhao J, Liu Z, et al. Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM. J Water Process Eng 2021;43:102250.

56. Lu S, Liu L, Yang Q, et al. Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Sci Total Environ 2021;786:147508.

57. Park JW, Lee SJ, Hwang DY, Seo S. Removal of microplastics via tannic acid-mediated coagulation and in vitro impact assessment. RSC Adv 2021;11:3556-66.

58. Gong Y, Bai Y, Zhao D, Wang Q. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: structural characterization and theoretical calculation. Water Res 2022;208:117884.

59. Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Sci Total Environ 2022;813:152623.

60. Peydayesh M, Suta T, Usuelli M, et al. Sustainable removal of microplastics and natural organic matter from water by coagulation-flocculation with protein amyloid fibrils. Environ Sci Technol 2021;55:8848-58.

61. Arvaniti OS, Antonopoulou G, Tsagkogianni D, Stasinakis AS. Screening on the sorption of emerging contaminants to polystyrene and polyethylene and use of coagulation - flocculation process for microplastics’ removal. Global NEST J 2021;23:303-8.

62. Tang W, Li H, Fei L, Wei B, Zhou T, Zhang H. The removal of microplastics from water by coagulation: a comprehensive review. Sci Total Environ 2022;851:158224.

63. Lee PS, Jung SM. Quantitative analysis of microplastics coagulation-removal process for clean sea salt production. Int J Environ Sci Technol 2022;19:5205-16.

64. Huang Z, Wang T, Shen M, Huang Z, Chong Y, Cui L. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst. Chem Eng J 2019;369:784-92.

65. Chen Z, Huang Z, Liu J, Wu E, Zheng Q, Cui L. Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal. J Hazard Mater 2021;406:124697.

66. Koul B, Bhat N, Abubakar M, Mishra M, Arukha AP, Yadav D. Application of natural coagulants in water treatment: a sustainable alternative to chemicals. Water 2022;14:3751.

67. Kweinor Tetteh E, Rathilal S. Application of organic coagulants in water and wastewater treatment. In: Sand A, Zaki E, editors. Organic polymers. IntechOpen; 2020.

68. Jarvis P, Banks J, Molinder R, Stephenson T, Parsons SA, Jefferson B. Processes for enhanced NOM removal: beyond Fe and Al coagulation. Water Supply 2008;8:709-16.

69. Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M. Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere 2018;190:54-71.

70. Shen M, Zhang Y, Almatrafi E, et al. Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem Eng J 2022;428:131161.

71. Garvasis J, Prasad AR, Shamsheera K, Jaseela P, Joseph A. Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant. Mater Chem Phys 2020;251:123040.

72. Zahrim A, Dexter Z, Joseph C, Hilal N. Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: decolourisation, kinetics and phytotoxicity studies. J Water Process Eng 2017;16:258-69.

73. Liu J, Zhu Y, Tao Y, et al. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 2013;6:98.

74. Sun Y, Zhou S, Chiang P, Shah KJ. Evaluation and optimization of enhanced coagulation process: water and energy nexus. Water Energy Nexus 2019;2:25-36.

75. Lin JL, Huang C, Dempsey B, Hu JY. Fate of hydrolyzed Al species in humic acid coagulation. Water Res 2014;56:314-24.

76. Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci 2003;100-2:475-502.

77. Lapointe M, Barbeau B. Characterization of ballasted flocs in water treatment using microscopy. Water Res 2016;90:119-27.

78. Radityaningrum AD, Trihadiningrum Y, Mar’atusholihah, Soedjono ES, Herumurti W. Microplastic contamination in water supply and the removal efficiencies of the treatment plants: a case of Surabaya City, Indonesia. J Water Process Eng 2021;43:102195.

79. Wu J, Zhang Y, Tang Y. Fragmentation of microplastics in the drinking water treatment process - a case study in Yangtze River region, China. Sci Total Environ 2022;806:150545.

80. Kankanige D, Babel S. Contamination by ≥6.5 μm-sized microplastics and their removability in a conventional water treatment plant (WTP) in Thailand. J Water Process Eng 2021;40:101765.

81. Lares M, Ncibi MC, Sillanpää M, Sillanpää M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 2018;133:236-46.

82. Hassas B, Caliskan H, Guven O, Karakas F, Cinar M, Celik MS. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids Surf A Physicochem Eng Asp 2016;492:88-99.

83. Zhanpeng J, Yuntao G. Flocculation morphology: effect of particulate shape and coagulant species on flocculation. Water Sci Technol 2006;53:9-16.

84. Sibiya NP, Rathilal S, Tetteh EK. Coagulation treatment of wastewater: kinetics and natural coagulant evaluation. Molecules 2021;26:698.

85. Tetteh EK, Rathilal S. Application of magnetized nanomaterial for textile effluent remediation using response surface methodology. Mater Today Proc 2021;38:700-11.

86. Yang R, Li H, Huang M, Yang H, Li A. A review on chitosan-based flocculants and their applications in water treatment. Water Res 2016;95:59-89.

87. Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 2010;159:189-97.

88. Li R, Gao B, Sun J, Yue Q. Coagulation behavior of kaolin-anionic surfactant simulative wastewater by polyaluminum chloride-polymer dual coagulants. Environ Sci Pollut Res Int 2018;25:7382-90.

89. Gao Y, Liu Y. Removal of microplastics by coagulation treatment in waters and prospect of recycling of separated microplastics: a mini-review. J Environ Chem Eng 2022;10:108197.

90. Wu X, Ge X, Wang D, Tang H. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf A Physicochem Eng Asp 2007;305:89-96.

91. Lu S, Zhu K, Song W, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Sci Total Environ 2018;630:951-9.

92. Liu X, Zhao S, Zhang X, Jia W, Zou Z, Wang Q. Application of sodium alginate as a coagulant aid for mitigating membrane fouling induced by humic acid in dead-end ultrafiltration process. Sep Purif Technol 2020;253:117421.

93. Mcyotto F, Wei Q, Macharia DK, Huang M, Shen C, Chow CW. Effect of dye structure on color removal efficiency by coagulation. Chem Eng J 2021;405:126674.

94. Nel HA, Chetwynd AJ, Kelly CA, et al. An untargeted thermogravimetric analysis-fourier transform infrared-gas chromatography-mass spectrometry approach for plastic polymer identification. Environ Sci Technol 2021;55:8721-9.

95. He L, Ji L, Sun X, Chen S, Kuang S. Investigation of mini-hydrocyclone performance in removing small-size microplastics. Particuology 2022;71:1-10.

96. Igwegbe CA, Ighalo JO, Onukwuli OD, Obiora-okafo IA, Anastopoulos I. Coagulation-flocculation of aquaculture wastewater using green coagulant from garcinia kola seeds: parametric studies, kinetic modelling and cost analysis. Sustainability 2021;13:9177.

97. Nayeri D, Mousavi SA. A comprehensive review on the coagulant recovery and reuse from drinking water treatment sludge. J Environ Manage 2022;319:115649.

98. El Bouaidi W, Libralato G, Tazart Z, et al. Nature-based coagulants for drinking water treatment: an ecotoxicological overview. Water Environ Res 2022;94:e10782.

99. Jachimowicz P, Cydzik-Kwiatkowska A. Coagulation and flocculation before primary clarification as efficient solutions for low-density microplastic removal from wastewater. Int J Environ Res Public Health 2022;19:13013.

100. Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2018;36:92-119.

101. Akhtar N, Syakir Ishak MI, Bhawani SA, Umar K. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water 2021;13:2660.

102. Magalhães S, Alves L, Medronho B, Romano A, Rasteiro MDG. Microplastics in ecosystems: from current trends to bio-based removal strategies. Molecules 2020;25:3954.

103. Li B, Zhao J, Ge W, Li W, Yuan H. Coagulation-flocculation performance and floc properties for microplastics removal by magnesium hydroxide and PAM. J Environ Chem Eng 2022;10:107263.

104. Sajid M, Ihsanullah I, Tariq Khan M, Baig N. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: a review. Sep Purif Technol 2023;305:122453.

105. Sun C, Wang Z, Zheng H, Chen L, Li F. Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. J Hazard Mater 2021;420:126599.

106. Sun C, Wang Z, Chen L, Li F. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chem Eng J 2020;393:124796.

107. Kong F, Parhiala K, Wang S, Fatehi P. Preparation of cationic softwood kraft lignin and its application in dye removal. Eur Polym J 2015;67:335-45.

108. Wahlström R, Kalliola A, Heikkinen J, Kyllönen H, Tamminen T. Lignin cationization with glycidyltrimethylammonium chloride aiming at water purification applications. Ind Crops Prod 2017;104:188-94.

109. Moussa DT, El-Naas MH, Nasser M, Al-Marri MJ. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manage 2017;186:24-41.

110. Shen M, Song B, Zhu Y, et al. Removal of microplastics via drinking water treatment: current knowledge and future directions. Chemosphere 2020;251:126612.

111. Garcia-segura S, Eiband MMS, de Melo JV, Martínez-huitle CA. Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. J Electroanal Chem 2017;801:267-99.

112. Zeboudji B, Drouiche N, Lounici H, Mameri N, Ghaffour N. The influence of parameters affecting boron removal by electrocoagulation process. Sep Sci Technol 2013;48:1280-8.

113. El-naas MH, Alhaija MA, Al-zuhair S. Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J Environ Chem Eng 2014;2:56-62.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/