REFERENCES

1. Avio CG, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res 2017;128:2-11.

2. Duhec AV, Jeanne RF, Maximenko N, Hafner J. Composition and potential origin of marine debris stranded in the Western Indian Ocean on remote Alphonse Island, Seychelles. Mar Pollut Bull 2015;96:76-86.

3. Galgani F, Hanke G, Maes T. Global distribution, composition and abundance of marine litter. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer International Publishing; 2015. p. 29-56.

4. Terzi Y, Erüz C, Özşeker K. Marine litter composition and sources on coasts of south-eastern Black Sea: a long-term case study. Waste Manag 2020;105:139-47.

5. Chassignet EP, Xu X, Zavala-romero O. Tracking marine litter with a global ocean model: where does it go? Front Mar Sci 2021;8:667591.

6. Selvam K, Xavier KAM, Shivakrishna A, Bhutia TP, Kamat S, Shenoy L. Abundance, composition and sources of marine debris trawled-up in the fishing grounds along the north-east Arabian coast. Sci Total Environ 2021;751:141771.

7. United Nations Environment Programme. UN declares war on ocean plastic. Available from: https://www.unenvironment.org/news-and-stories/press-release/un-declares-war-ocean-plastic [Last accessed on 29 Sep 2022].

8. Deloitte (2019). The price tag of plastic pollution: an economic assessment of river plastic. Available from: https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/strategy-analytics-and-ma/deloitte-nl-strategy-analytics-and-ma-the-price-tag-of-plastic-pollution.pdf [Last accessed on 29 Sep 2022].

9. Zhao H, Zhou Y, Han Y, et al. Pollution status of microplastics in the freshwater environment of China: a mini review. WECN 2022; doi: 10.20517/wecn.2021.05.

10. Savoca MS, McInturf AG, Hazen EL. Plastic ingestion by marine fish is widespread and increasing. Glob Chang Biol 2021;27:2188-99.

11. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 2011;119:989-96.

12. Völker J, Ashcroft F, Vedøy Å, Zimmermann L, Wagner M. Adipogenic activity of chemicals used in plastic consumer products. Environ Sci Technol 2022;56:2487-96.

13. Agathokleous E, Barceló D, Fatta-kassinos D, Moore MN, Calabrese EJ. Contaminants of emerging concern and aquatic organisms: the need to consider hormetic responses in effect evaluations. WECN 2021; doi: 10.20517/wecn.2021.01.

14. Goldberg ED. Emerging problems in the coastal zone for the twenty-first century. Marine Pollution Bulletin 1995;31:152-8.

15. Hafeez S, Sing Wong M, Abbas S, et al. Detection and monitoring of marine pollution using remote sensing technologies. In: Bachari Fouzia H, editor. Monitoring of marine pollution. IntechOpen; 2019.

16. Emmerik T, González-fernández D, Mendrik F, Biermann L, Drummond J, Liedermann M. Editorial: early career scientists’ contributions to river plastic monitoring across scales. Front Earth Sci 2022;10:861531.

17. Wang T, Hu M, Song L, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environ Pollut 2020;266:115137.

18. United Nations Environment Programme (UNEP). From pollution to solution: a global assessment of marine litter and plastic pollution. Available from: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution [Last accessed on 29 Sep 2022].

19. Kirschke S, Avellán T, Bärlund I, et al. Capacity challenges in water quality monitoring: understanding the role of human development. Environ Monit Assess 2020;192:298.

20. Richard D, Sébastien D, Aude-Sophie R, Jason R, Esha Z. Quality unknown: the invisible water crisis. World Bank Group; 2019. Available from: https://openknowledge.worldbank.org/handle/10986/32245 [Last accessed on 29 Sep 2022].

21. Cowger W, Gray A, Christiansen SH, et al. Critical review of processing and classification techniques for images and spectra in microplastic research. Appl Spectrosc 2020;74:989-1010.

22. Kumar P, Inamura Y, Bao PN, Abeynayaka A, Dasgupta R, Abeynayaka HDL. Microplastics in freshwater environment in asia: a systematic scientific review. Water 2022;14:1737.

23. Meijer LJJ, van Emmerik T, van der Ent R, Schmidt C, Lebreton L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci Adv 2021;7:eaaz5803.

24. Evans MC, Ruf CS. Toward the detection and imaging of ocean microplastics with a spaceborne radar. IEEE Trans Geosci Remote Sensing 2022;60:1-9.

25. Hafeez S, Wong MS, Abbas S, Asim M. Evaluating Landsat-8 and Sentinel-2 data consistency for high spatiotemporal inland and coastal water quality monitoring. Remote Sensing 2022;14:3155.

26. Law KL, Morét-Ferguson SE, Goodwin DS, et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set. Environ Sci Technol 2014;48:4732-8.

27. Kukulka T, Proskurowski G, Morét-ferguson S, Meyer DW, Law KL. The effect of wind mixing on the vertical distribution of buoyant plastic debris: wind effects on plastic marine debris. Geophys Res Lett 2012;39:n/a-n/a.

28. van Sebille E, Aliani S, Law KL, et al. The physical oceanography of the transport of floating marine debris. Environ Res Lett 2020;15:023003.

29. Maximenko N, Corradi P, Law KL, et al. Toward the integrated marine debris observing system. Front Mar Sci 2019;6:447.

30. Tan Z, Cao Z, Shen M, Chen J, Song Q, Duan H. Remote estimation of water clarity and suspended particulate matter in qinghai lake from 2001 to 2020 using MODIS images. Remote Sensing 2022;14:3094.

31. Zhang L, Zhang L, Cen Y, et al. Prediction of total phosphorus concentration in macrophytic lakes using chlorophyll-sensitive bands: a case study of lake baiyangdian. Remote Sensing 2022;14:3077.

32. Du C, Li Y, Lyu H, et al. Characteristics of the total suspended matter concentration in the hongze lake during 1984-2019 based on landsat data. Remote Sensing 2022;14:2919.

33. Yang L, Driscol J, Sarigai S, Wu Q, Chen H, Lippitt CD. Google earth engine and artificial intelligence (ai): a comprehensive review. Remote Sensing 2022;14:3253.

34. Liu P. A survey of remote-sensing big data. Front Environ Sci 2015:3.

35. Sannigrahi S, Basu B, Basu AS, Pilla F. Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Mar Pollut Bull 2022;178:113527.

36. Biermann L, Clewley D, Martinez-Vicente V, Topouzelis K. Finding plastic patches in coastal waters using optical satellite data. Sci Rep 2020;10:5364.

37. Jamali A, Mahdianpari M. A cloud-based framework for large-scale monitoring of ocean plastics using multi-spectral satellite imagery and generative adversarial network. Water 2021;13:2553.

38. Basu B, Sannigrahi S, Sarkar Basu A, Pilla F. Development of novel classification algorithms for detection of floating plastic debris in coastal waterbodies using multispectral Sentinel-2 remote sensing imagery. Remote Sensing 2021;13:1598.

39. Acuña-ruz T, Uribe D, Taylor R, et al. Anthropogenic marine debris over beaches: spectral characterization for remote sensing applications. Remote Sensing of Environment 2018;217:309-22.

40. Gómez À, Scandolo L, Eisemann E. A learning approach for river debris detection. Int J Appl Earth Obs Geoinf 2022;107:102682.

41. Kikaki A, Karantzalos K, Power CA, Raitsos DE. Remotely sensing the source and transport of marine plastic debris in bay islands of honduras (Caribbean Sea). Remote Sensing 2020;12:1727.

42. Zhou S, Kuester T, Bochow M, Bohn N, Brell M, Kaufmann H. A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data. Remote Sens Environ 2021;264:112598.

43. Tasseron P, van Emmerik T, Peller J, Schreyers L, Biermann L. Advancing floating macroplastic detection from space using experimental hyperspectral imagery. Remote Sensing 2021;13:2335.

44. Whelan MJ, Linstead C, Worrall F, et al. Is water quality in British rivers “better than at any time since the end of the Industrial Revolution”? Sci Total Environ 2022;843:157014.

45. Ogashawara I. Determination of phycocyanin from space - a bibliometric analysis. Remote Sensing 2020;12:567.

46. Enfrin M, Lee J, Gibert Y, Basheer F, Kong L, Dumée LF. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J Hazard Mater 2020;384:121393.

47. Ter Halle A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol 2016;50:5668-75.

48. Song YK, Hong SH, Eo S, Han GM, Shim WJ. Rapid production of micro- and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight. Environ Sci Technol 2020;54:11191-200.

49. Hu C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: challenges and potentials. Remote Sens Environ 2021;259:112414.

50. Dasgupta S, Sarraf M, Wheeler D. Plastic waste cleanup priorities to reduce marine pollution: a spatiotemporal analysis for Accra and Lagos with satellite data. Sci Total Environ 2022;839:156319.

51. Martínez-vicente V, Clark JR, Corradi P, et al. Measuring marine plastic debris from space: initial assessment of observation requirements. Remote Sensing 2019;11:2443.

52. Farré M. Remote and in situ devices for the assessment of marine contaminants of emerging concern and plastic debris detection. Current Opinion in Environ Sci Health 2020;18:79-94.

53. Mace TH. At-sea detection of marine debris: overview of technologies, processes, issues, and options. Mar Pollut Bull 2012;65:23-7.

54. Topouzelis K, Papageorgiou D, Suaria G, Aliani S. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Mar Pollut Bull 2021;170:112675.

55. Andries A, Morse S, Murphy RJ, Lynch J, Woolliams ER. Using data from earth observation to support sustainable development indicators: an analysis of the literature and challenges for the future. Sustainability 2022;14:1191.

56. Bachmann N, Tripathi S, Brunner M, Jodlbauer H. The contribution of data-driven technologies in achieving the sustainable development goals. Sustainability 2022;14:2497.

57. Cózar A, Echevarría F, González-Gordillo JI, et al. Plastic debris in the open ocean. Proc Natl Acad Sci U S A 2014;111:10239-44.

58. Cózar A, Sanz-Martín M, Martí E, et al. Plastic accumulation in the Mediterranean sea. PLoS One 2015;10:e0121762.

59. Viatte C, Clerbaux C, Maes C, et al. Air pollution and sea pollution seen from space. Surv Geophys 2020;41:1583-609.

60. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 2018;344:179-99.

61. Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun 2018;9:1430.

62. Chang C, Chou C, Lee M. Determining leaching of bisphenol A from plastic containers by solid-phase microextraction and gas chromatography-mass spectrometry. Analytica Chimica Acta 2005;539:41-7.

63. Fauvelle V, Garel M, Tamburini C, et al. Organic additive release from plastic to seawater is lower under deep-sea conditions. Nat Commun 2021;12:4426.

64. Chaukura N, Kefeni KK, Chikurunhe I, et al. Microplastics in the aquatic environment - the occurrence, sources, ecological impacts, fate, and remediation challenges. Pollutants 2021;1:95-118.

65. Rios LM, Jones PR, Moore C, Narayan UV. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch”. J Environ Monit 2010;12:2226-36.

66. Lee H, Shim WJ, Kwon JH. Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 2014;470-471:1545-52.

67. Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 2011;62:1683-92.

68. Xiang S, Xie Y, Sun X, Du H, Wang J. Identification and quantification of microplastics in aquaculture environment. Front Mar Sci 2022;8:804208.

69. Miliute-Plepiene J, Fråne A, Haikonen K, Youhanan L. Overview of available methods to monitor marine plastic litter Incl. method for riverine litter monitoring developed within BLASTIC. Stockholm, Sweden, IVL Swedish Environmental Research Institute, 47pp.

70. Garello R, Plag HP, Shapiro A, Martinez S, Pearlman J, Pendleton L. Technologies for observing and monitoring plastics in the oceans. OCEANS 2019 - Marseille; 2019.

71. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 2012;46:3060-75.

72. Ginebreda A. Emerging contaminants and nanoplastics in the water environment: a matter of rising concern. WECN 2021; doi: 10.20517/wecn.2021.02.

73. Luo X, Wang Z, Yang L, Gao T, Zhang Y. A review of analytical methods and models used in atmospheric microplastic research. Sci Total Environ 2022;828:154487.

74. Whitehead PG, Bussi G, Hughes JMR, et al. Modelling microplastics in the river thames: sources, sinks and policy implications. Water 2021;13:861.

75. Ginebreda A, Barceló D. Data-based interpretation of emerging contaminants occurrence in rivers using a simple advection-reaction model. Water Emerg Contam Nanoplastics 2022;1:12.

76. Liubartseva S, Coppini G, Lecci R, Creti S. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Mar Pollut Bull 2016;103:115-27.

77. Balas C, Williams A, Simmons S, Ergin A. A statistical riverine litter propagation model. Mar Pollut Bull 2001;42:1169-76.

78. Wright C. Remote sensing tracks down “plastic plants” in rivers. Eos 2022:103.

79. Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 2018;643:1644-51.

80. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 2011;62:2588-97.

81. Driedger AG, Dürr HH, Mitchell K, Van Cappellen P. Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 2015;41:9-19.

82. Lee H, Kunz A, Shim WJ, Walther BA. Microplastic contamination of table salts from Taiwan, including a global review. Sci Rep 2019;9:10145.

83. Ripken C, Kotsifaki DG, Nic Chormaic S. Analysis of small microplastics in coastal surface water samples of the subtropical island of Okinawa, Japan. Sci Total Environ 2021;760:143927.

84. L F, I PP, J M, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar Pollut Bull 2016;113:461-8.

85. Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts 2016;18:1050-9.

86. Sousa MC, deCastro M, Gago J, et al. Modelling the distribution of microplastics released by wastewater treatment plants in Ria de Vigo (NW Iberian Peninsula). Mar Pollut Bull 2021;166:112227.

87. Domercq P, Praetorius A, Macleod M. The full multi: an open-source framework for modelling the transport and fate of nano- and microplastics in aquatic systems. Environ Modell Softw 2022;148:105291.

88. Zhu C, Kanaya Y, Nakajima R, et al. Characterization of microplastics on filter substrates based on hyperspectral imaging: laboratory assessments. Environ Pollut 2020;263:114296.

89. Serranti S, Palmieri R, Bonifazi G, Cózar A. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag 2018;76:117-25.

90. Guffogg JA, Soto-berelov M, Jones SD, Bellman CJ, Lavers JL, Skidmore AK. Towards the Spectral Mapping of Plastic Debris on Beaches. Remote Sensing 2021;13:1850.

91. Prakash N, Stahl F, Mueller CL, Ferdinand O, Zielinski O. Intelligent marine pollution analysis on spectral data. OCEANS 2021: San Diego - Porto.

92. Goddijn-murphy L, Williamson B. On thermal infrared remote sensing of plastic pollution in natural waters. Remote Sensing 2019;11:2159.

93. Valdenegro-Toro M. Deep neural networks for marine debris detection in sonar images. ArXiv; 2019.

94. Goddijn-Murphy L, Peters S, van Sebille E, James NA, Gibb S. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Mar Pollut Bull 2018;126:255-62.

95. Veerasingam S, Chatting M, Asim FS, Al-Khayat J, Vethamony P. Detection and assessment of marine litter in an uninhabited island, Arabian Gulf: a case study with conventional and machine learning approaches. Sci Total Environ 2022;838:156064.

96. Themistocleous K, Papoutsa C, Michaelides S, Hadjimitsis D. Investigating detection of floating plastic litter from space using Sentinel-2 imagery. Remote Sensing 2020;12:2648.

97. Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA. Distribution of plastic polymer types in the marine environment: a meta-analysis. J Hazard Mater 2019;369:691-8.

98. Desforges JP, Galbraith M, Dangerfield N, Ross PS. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 2014;79:94-9.

99. Sait STL, Sørensen L, Kubowicz S, et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ Pollut 2021;268:115745.

100. Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 2020;11:3381.

101. Mecozzi M, Pietroletti M, Monakhova YB. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Mar Pollut Bull 2016;106:155-61.

102. Khetkeeree S, Liangrocapart S. Detecting floating plastic marine debris using Sentinel-2 data via modified infrared NDVI. 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).

103. Moshtaghi M, Knaeps E, Sterckx S, Garaba S, Meire D. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci Rep 2021;11:5436.

104. Warren M, Simis S, Martinez-Vicente V, et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens Environ 2019;225:267-89.

105. Renosh PR, Doxaran D, Keukelaere LD, Gossn JI. Evaluation of atmospheric correction algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in highly turbid estuarine waters. Remote Sensing 2020;12:1285.

106. Topouzelis K, Papakonstantinou A, Garaba SP. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int J Appl Earth Obs Geoinf 2019;79:175-83.

107. Topouzelis K, Papageorgiou D, Karagaitanakis A, Papakonstantinou A, Arias Ballesteros M. Remote sensing of sea surface artificial floating plastic targets with Sentinel-2 and unmanned aerial systems (Plastic Litter Project 2019). Remote Sensing 2020;12:2013.

108. Kikaki K, Kakogeorgiou I, Mikeli P, Raitsos DE, Karantzalos K. MARIDA: a benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS One 2022;17:e0262247.

109. Topouzelis K, Papageorgiou D, Karagaitanakis A, Papakonstantinou A, Ballesteros MA. Plastic Litter Project 2019: exploring the detection of floating plastic litter using drones and Sentinel 2 satellite images. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

110. Ciappa AC. Marine plastic litter detection offshore Hawai’i by Sentinel-2. Mar Pollut Bull 2021;168:112457.

111. Le Moigne M, Brun M, Gerigny O, Galgani F. (2021). CLEANATLANTIC. Tackling marine litter in the Atlantic area. Spatial and temporal variability in floating litter in North Sea/English Channel and Bay of Biscay/Celtic Sea-2015-2020. Available from: https://archimer.ifremer.fr/doc/00750/86159/ [Last accessed on 29 Sep 2022].

112. Martinez-Vicente V, Biermann L, Mata Aser. (2020). Optical methods for marine litter detection (OPTIMAL) - final report. Zenodo; 2020.

113. Arias M, Hennen M, Jacobs C. Report on detailed processing model, EO tracking of marine debris in the mediterranean sea from Public satellites Project (2019). Available from: https://eo4society.esa.int/projects/eo-tracking-of-marine-debris-in-the-mediterranean-sea-from-public-satellites/ [Last accessed on 29 Sep 2022]

114. Biermann L, Schreyers L, van Emmerik T, Bui TK, Ling Y, Streett D. (2022) Finding riverine plastics in floating plant patches using Worldview-3 satellite imagery. EGU General Assembly 2022.

115. Pichel WG, Veenstra TS, Churnside JH, et al. GhostNet marine debris survey in the Gulf of Alaska - satellite guidance and aircraft observations. Mar Pollut Bull 2012;65:28-41.

116. Kremezi M, Kristollari V, Karathanassi V, et al. Pansharpening PRISMA data for marine plastic litter detection using plastic indexes. IEEE Access 2021;9:61955-71.

117. Martins V, Barbosa C, de Carvalho L, Jorge D, Lobo F, Novo E. Assessment of atmospheric correction methods for sentinel-2 msi images applied to amazon floodplain lakes. Remote Sensing 2017;9:322.

118. Arii M, Koiwa M, Aoki Y. Applicability of SAR to marine debris surveillance after the great east japan earthquake. IEEE J Sel Top Appl Earth Obs Remote Sens 2014;7:1729-44.

119. Martin-Rodriguez F. Big plastic masses detection using Sentinel 2 images. arXiv;2021.

120. Jakovljević G, Govedarica M, Taboada FÁ. Remote sensing data in mapping plastics at surface water bodies. In Conference: FIG Working Week; 2019. Available from: https://www.researchgate.net/publication/332718025_Remote_Sensing_Data_in_Mapping_Plastics_at_Surface_Water_Bodies [Last accessed on 29 Sep 2022]

121. Matthews JP, Ostrovsky L, Yoshikawa Y, Komori S, Tamura H. Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi. Nature Geosci 2017;10:598-603.

122. Maneja RH, Thomas R, Miller JD, et al. Marine litter survey at the major sea turtle nesting islands in the Arabian Gulf using in-situ and remote sensing methods. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

123. Aoyama T. (2016, May). Extraction of marine debris in the Sea of Japan using high spatial-resolution satellite images. In remote sensing of the oceans and inland waters: techniques, applications, and challenges (Vol. 9878, pp. 213-219). SPIE; 2016.

124. Davaasuren N, Marino A, Boardman C, et al. Detecting microplastics pollution in world oceans using SAR remote sensing. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 938-941). IEEE; 2018.

125. Atwood EC, Falcieri FM, Piehl S, et al. Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: Comparing remote sensing and hydrodynamic modelling with in situ sample collections. Mar Pollut Bull 2019;138:561-74.

126. Taggio N, Aiello A, Ceriola G, et al. A Combination of machine learning algorithms for marine plastic litter detection exploiting hyperspectral PRISMA data. Remote Sensing 2022;14:3606.

127. Ramezan CA, Warner TA, Maxwell AE, Price BS. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sensing 2021;13:368.

128. Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 2011;66:247-59.

129. Wang W, Liu X, Mou X. Data augmentation and spectral structure features for limited samples hyperspectral classification. Remote Sensing 2021;13:547.

130. Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ. Advanced spectral classifiers for hyperspectral images: a review. IEEE Geoscience and Remote Sensing Magazine; 2017. Available from: https://www2.umbc.edu/rssipl/people/aplaza/Papers/Journals/2017.GRSM.Spectral.pdf [Last accessed on 29 Sep 2022].

131. Ham J, Yangchi Chen, Crawford M, Ghosh J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sensing 2005;43:492-501.

132. Maxwell AE, Strager MP, Warner TA, Ramezan CA, Morgan AN, Pauley CE. Large-area, high spatial resolution land cover mapping using random forests, GEOBIA, and NAIP orthophotography: findings and recommendations. Remote Sensing 2019;11:1409.

133. Zhu W, Qian C, He N, Kong Y, Zou Z, Li Y. Research on chlorophyll - a concentration retrieval based on bp neural network model-case study of dianshan lake, China. Sustainability 2022;14:8894.

134. Sagan V, Peterson KT, Maimaitijiang M, et al. Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews 2020;205:103187.

135. Kravitz J, Matthews M, Lain L, Fawcett S, Bernard S. Potential for high fidelity global mapping of common inland water quality products at high spatial and temporal resolutions based on a synthetic data and machine learning approach. Front Environ Sci 2021;9:587660.

136. Andrade H, Glüge J, Herzke D, Ashta NM, Nayagar SM, Scheringer M. Oceanic long-range transport of organic additives present in plastic products: an overview. Environ Sci Eur 2021:33.

137. Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis 2017;9:1839-44.

138. Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 1997;62:241-52.

139. Herrmann SM, Anyamba A, Tucker CJ. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Change 2005;15:394-404.

140. Guimarães T, Veronez M, Koste E, et al. An alternative method of spatial autocorrelation for chlorophyll detection in water bodies using remote sensing. Sustainability 2017;9:416.

141. Liu H, Sun K, Liu X, et al. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China. J Contam Hydrol 2022;248:104028.

142. Schell JA, Deering D. Monitoring vegetation systems in the great plains with erts. NASA Special Publication; 1973. Available from: https://ntrs.nasa.gov/citations/19740022614 [Last accessed on 29 Sep 2022].

143. Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci Adv 2021;7:eabc7447.

144. Hu C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ 2009;113:2118-29.

145. Morel A, Prieur L. Analysis of variations in ocean color1: ocean color analysis. Limnol Oceanogr 1977;22:709-22.

146. Rokni K, Ahmad A, Selamat A, Hazini S. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing 2014;6:4173-89.

147. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 2006;27:3025-33.

148. Wilson EH, Sader SA. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 2002;80:385-96.

149. Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS (Earth Resources Technology Satellite). Proceedings of 3rd Earth Resources Technology Satellite Symposium, Greenbelt, 10-14 December, SP-351, 309-317; 1973. Available from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=1396706 [Last accessed on 29 Sep 2022]

150. Feyisa GL, Meilby H, Fensholt R, Proud SR. Automated water extraction index: a new technique for surface water mapping using landsat imagery. Remote Sens Environ 2014;140:23-35.

151. Hu C, Feng L, Hardy RF, Hochberg EJ. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sens Environ 2015;167:229-46.

152. Wang M, Hu C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens Environ 2016;183:350-67.

153. Kühn F, Oppermann K, Hörig B. Hydrocarbon index - an algorithm for hyperspectral detection of hydrocarbons. Int J Remote Sens 2004;25:2467-73.

154. Leal Filho W, Dedeoglu C, Dinis MAP, et al. Riverine plastic pollution in Asia: results from a bibliometric assessment. Land 2022;11:1117.

155. Campanale F, Savino C, Pojar I, Massarelli IC, Uricchio VF. A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 2020;12:6755. MDPI AG.

156. Elhag M, Gitas I, Othman A, Bahrawi J, Gikas P. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, saudi arabia. Water 2019;11:556.

157. Scherer C, Weber A, Stock F, et al. Comparative assessment of microplastics in water and sediment of a large European river. Sci Total Environ 2020;738:139866.

158. Blettler MCM, Abrial E, Khan FR, Sivri N, Espinola LA. Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res 2018;143:416-24.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/