REFERENCES

1. Agarwal S. Biodegradable polymers: present opportunities and challenges in providing a microplastic-free environment. Macromol Chem Phys 2020;221:2000017.

2. Schnurr REJ, Alboiu V, Chaudhary M, et al. Reducing marine pollution from single-use plastics (SUPs): a review. Mar Pollut Bull 2018;137:157-71.

3. Jia MZ. Biodegradable plastics: breaking down the facts - production, composition and environmental impact; 2020. Available from: https://www.greenpeace.org/static/planet4-eastasia-stateless/84075f56-biodegradable-plastics-report.pdf [Last accessed on 19 Sep 2022].

4. Fojt J, David J, Přikryl R, Řezáčová V, Kučerík J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci Total Environ 2020;745:140975.

5. IUPAC. Compendium of chemical terminology, 2nd ed. (the “Gold Book”). In: McNaught AD, Wilkinson A, Chalk SJ (online version 2019-), editors. Oxford: Blackwell Scientific Publications; 1997.

6. Qin M, Chen C, Song B, et al. A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? J Clean Prod 2021;312:127816.

7. European Bioplastics, nova-Institute. Bioplastics market development update 2021. Berlin; 2021. Available from: https://www.european-bioplastics.org/news/publications/#MarketData. [Last accessed on 19 Sep 2022].

8. Ashter SA. New developments. In: Ashter SA, editor. Introduction to Bioplastics engineering. Elsevier; 2016. p. 251-74. Available from: https://www.sciencedirect.com/science/article/pii/B9780323393966000105. [Last accessed on 19 Sep 2022].

9. Kjeldsen A, Price M, Lilley C, Guzniczak E, Archer I. A review of standards for biodegradable plastics. Glasgow; 2018. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/817684/review-standards-for-biodegradable-plastics-IBioIC.pdf. [Last accessed on 19 Sep 2022].

10. Ki H, Ok Park O. Synthesis, characterization and biodegradability of the biodegradable aliphatic-aromatic random copolyesters. Polymer 2001;42:1849-61.

11. Van den Oever M, Molenveld K, Van der Zee M, Bos H. Biobased and biodegradable plastics - facts and figures. Wageningen: Wageningen Food & Biobased Research; 2017.

12. Rafiqah SA, Khalina A, Harmaen AS, et al. A review on properties and application of bio-based poly(butylene succinate). Polymers (Basel) 2021;13:1436.

13. Rivera-Briso AL, Serrano-Aroca Á. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers (Basel) 2018;10:732.

14. Chemical Retrieval on the Web. Polymer properties database. Available from: http://www.polymerdatabase.com/home.html [Last accessed on 19 Sep 2022].

15. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv 2008;26:246-65.

16. Gross RA, Kalra B. Biodegradable polymers for the environment. Science 2002;297:803-7.

17. Sousa FDB. Plastic and its consequences during the COVID-19 pandemic. Environ Sci Pollut Res Int 2021;28:46067-78.

18. United States Environmental Protection Agency. Containers and packaging: product-specific data. Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific#C&POverview [Last accessed on 19 Sep 2022].

19. United States Environmental Protection Agency. Plastics: material-specific data. Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data [Last accessed on 19 Sep 2022].

20. Merran J. 2019 International Coastal Cleanup report: the beach and beyond. Washington, DC; 2019. Available from: https://oceanconservancy.org/wp-content/uploads/2019/09/Final-2019-ICC-Report.pdf [Last accessed on 19 Sep 2022].

21. Prata JC, Silva ALP, Walker TR, Duarte AC, Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol 2020;54:7760-5.

22. Akhbarizadeh R, Dobaradaran S, Nabipour I, et al. Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: an emerging source of secondary microplastics in coastlines. Mar Pollut Bull 2021;168:112386.

23. Filiciotto L, Rothenberg G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 2021;14:56-72.

24. Peng C, Wang J, Liu X, Wang L. Differences in the plastispheres of biodegradable and non-biodegradable plastics: a mini review. Front Microbiol 2022;13:849147.

25. Carus M. Compostable plastic bags carry goods and hopes for the future. Hürth; 2016. Available from: https://renewable-carbon.eu/news/wp-content/uploads/2016/04/16-04-05-PR-compostable-plastic-bags-in-Europe.pdf [Last accessed on 19 Sep 2022].

26. ASTM International. ASTM standards. Available from: https://www.astm.org/catalogsearch/result/index/?q=biodegradable+plastic [Last accessed on 19 Sep 2022].

27. Choe S, Kim Y, Won Y, Myung J. Bridging three gaps in biodegradable plastics: misconceptions and truths about biodegradation. Front Chem 2021;9:671750.

28. Lott C, Eich A, Makarow D, et al. Half-life of biodegradable plastics in the marine environment depends on material, habitat, and climate zone. Front Mar Sci 2021;8:662074.

29. Elagami H, Ahmadi P, Fleckenstein JH, et al. Measurement of microplastic settling velocities and implications for residence times in thermally stratified lakes. Limnology & Oceanography 2022;67:934-45.

30. SAPEA. Biodegradability of plastics in the open environment. Berlin; 2020. Available from: https://www.sapea.info/wp-content/uploads/bop-report.pdf [Last accessed on 19 Sep 2022].

31. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? Angew Chem Int Ed Engl 2019;58:50-62.

32. Wang L, Peng Y, Xu Y, et al. Earthworms’ degradable bioplastic diet of polylactic acid: easy to break down and slow to excrete. Environ Sci Technol 2022;56:5020-8.

33. Wei XF, Bohlén M, Lindblad C, Hedenqvist M, Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res 2021;198:117123.

34. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 2008;73:429-42.

35. Wang GX, Huang D, Ji JH, Völker C, Wurm FR. Seawater-degradable polymers-fighting the marine plastic pollution. Adv Sci (Weinh) 2020;8:2001121.

36. do Val Siqueira L, Arias CILF, Maniglia BC, Tadini CC. Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Current Opinion in Food Science 2021;38:122-30.

37. Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol 2021;325:124739.

38. European Bioplastics, nova-Institute. Bioplastics market data 2017. Berlin; 2017. Available from: https://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Data_2017.pdf [Last accessed on 19 Sep 2022].

39. European Bioplastics, nova-Institute. Bioplastics market development update 2019. Berlin; 2019. Available from: http://www.european-bioplastics.org/news/publications/ [Last accessed on 19 Sep 2022].

40. European Bioplastics, nova-Institute. Bioplastics market data 2018. Berlin; 2018. Available from: https://www.european-bioplastics.org/new-market-data-the-positive-trend-for-the-bioplastics-industry-remains-stable/ [Last accessed on 19 Sep 2022].

41. European Bioplastics, nova-Institute. Bioplastic market development update 2020. Berlin; 2020. Available from: https://docs.european-bioplastics.org/conference/Report_Bioplastics_Market_Data_2020_short_version.pdf [Last accessed on 19 Sep 2022].

42. Min K, Cuiffi JD, Mathers RT. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat Commun 2020;11:727.

43. Muhamad II, Joon LK, Noor MAM. Comparing the degradation of poly-β-(hydroxybutyrate), Poly-β-(hydroxybutyrate-co-valerate)(PHBV) and PHBV/cellulose triacetate blend. Malaysian Polym J 2006;1:39-46.

44. Meereboer KW, Misra M, Mohanty AK. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 2020;22:5519-58.

45. Burkersroda FV, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002;23:4221-31.

46. Wei XF, Capezza AJ, Cui Y, et al. Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis. Water Res 2022;211:118068.

47. Volova T, Boyandin A, Vasiliev A, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 2010;95:2350-9.

48. Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob Chall 2017;1:1700048.

49. Catarci Carteny C, Blust R. Not only diamonds are forever: degradation of plastic films in a simulated marine environment. Front Environ Sci 2021;9:662844.

50. Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polym Degrad Stab 2002;75:347-55.

51. Narancic T, Verstichel S, Reddy Chaganti S, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 2018;52:10441-52.

52. Wang G, Huang D, Zhang W, Ji J. Degradation performance of typical biodegradable polyesters in seawater. J Funct Polym 2020;33:492-9.

53. Delacuvellerie A, Benali S, Cyriaque V, et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J Hazard Mater 2021;419:126526.

54. Cocca M, Falco F De, Gentile G, Avolio R, Errico ME, et al. Degradation of biodegradable plastic buried in sand. In: Cocca M, Di Pace E, Errico ME, et al., editors. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Switzerland: Springer International Publishing; 2018. p. 205-10. Available from: http://link.springer.com/10.1007/978-3-319-71279-6 [Last accessed on 19 Sep 2022].

55. Beltrán-Sanahuja A, Casado-Coy N, Simó-Cabrera L, Sanz-Lázaro C. Monitoring polymer degradation under different conditions in the marine environment. Environ Pollut 2020;259:113836.

56. Tachibana K, Urano Y, Numata K. Biodegradability of nylon 4 film in a marine environment. Polym Degrad Stab 2013;98:1847-51.

57. Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y. Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stab 1998;59:327-32.

58. Thellen C, Coyne M, Froio D, Auerbach M, Wirsen C, Ratto JA. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films. J Polym Environ 2008;16:1-11.

59. Eich A, Weber M, Lott C. Disintegration half-life of biodegradable plastic films on different marine beach sediments. PeerJ 2021;9:e11981.

60. Accinelli C, Saccà ML, Mencarelli M, Vicari A. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 2012;89:136-43.

61. Harden VP, Harris JO. The isoelectric point of bacterial cells. J Bacteriol 1953;65:198-202.

62. Pinnell LJ, Turner JW. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front Microbiol 2019;10:1252.

63. Desrousseaux C, Sautou V, Descamps S, Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 2013;85:87-93.

64. Laycock B, Nikolić M, Colwell JM, et al. Lifetime prediction of biodegradable polymers. Progress in Polymer Science 2017;71:144-89.

65. Teramoto N, Urata K, Ozawa K, Shibata M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Prog Polym Sci 2004;86:401-9.

66. Díaz A, Katsarava R, Puiggalí J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 2014;15:7064-123.

67. Jacquin J, Callac N, Cheng J, et al. Microbial diversity and activity during the biodegradation in seawater of various substitutes to conventional plastic cotton swab sticks. Front Microbiol 2021;12:604395.

68. Okoye CO, Addey CI, Oderinde O, et al. Toxic chemicals and persistent organic pollutants associated with micro-and nanoplastics pollution. Chem Eng J Adv 2022;11:100310.

69. Woolnough CA, Yee LH, Charlton TS, Foster LJ. A tuneable switch for controlling environmental degradation of bioplastics: addition of isothiazolinone to polyhydroxyalkanoates. PLoS One 2013;8:e75817.

70. Chen H. Assessment of biodegradation in different environmental compartments of blends and composites based on microbial poly(hydroxyalkanoate)s. University of Pisa; 2012. Available from: https://etd.adm.unipi.it/theses/available/etd-02222013-142550/unrestricted/Thesis__Chen_Haiyan.pdf [Last accessed on 19 Sep 2022].

71. Gerritse J, Leslie HA, de Tender CA, Devriese LI, Vethaak AD. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci Rep 2020;10:10945.

72. Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 2017;46:6855-71.

73. De Hoe GX, Zumstein MT, Getzinger GJ, et al. Photochemical transformation of poly(butylene adipate- co-terephthalate) and its effects on enzymatic hydrolyzability. Environ Sci Technol 2019;53:2472-81.

74. Lott C, Eich A, Unger B, et al. Field and mesocosm methods to test biodegradable plastic film under marine conditions. PLoS One 2020;15:e0236579.

75. Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ 2021;759:143536.

76. Lin Z, Jin T, Zou T, et al. Current progress on plastic/microplastic degradation: fact influences and mechanism. Environ Pollut 2022;304:119159.

77. Tian C, Lv J, Zhang W, et al. Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angew Chem Int Ed Engl 2022;61:e202206947.

78. Zhang B, Yang X, Liu L, et al. Spatial and seasonal variations in biofilm formation on microplastics in coastal waters. Sci Total Environ 2021;770:145303.

79. Li R, Liu Y, Sheng Y, Xiang Q, Zhou Y, Cizdziel JV. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: apparent change and interaction with heavy metals in soil. Environ Pollut 2020;260:113988.

80. Yang Y, Li Z, Yan C, et al. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci Total Environ 2022;814:152572.

81. Granberg M, von Friesen LW, Bach L, Collard F, Strand J, et al. Anthropogenic microlitter in wastewater and marine samples from Ny-Ålesund, Barentsburg and Signehamna, Svalbard. Stockholm; 2019. Available from: https://pure.au.dk/portal/files/152355861/C373march.pdf [Last accessed on 19 Sep 2022].

82. Kazour M, Jemaa S, Issa C, Khalaf G, Amara R. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): occurrence in surface water, sediments and biota samples. Sci Total Environ 2019;696:133933.

83. Sun J, Zhu ZR, Li WH, et al. Revisiting microplastics in landfill leachate: unnoticed tiny microplastics and their fate in treatment works. Water Res 2021;190:116784.

84. Tong H, Zhong X, Duan Z, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity. Sci Total Environ 2022;833:155275.

85. Lambert S, Wagner M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 2016;161:510-7.

86. González-pleiter M, Tamayo-belda M, Pulido-reyes G, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci: Nano 2019;6:1382-92.

87. Shruti VC, Kutralam-Muniasamy G. Bioplastics: missing link in the era of microplastics. Sci Total Environ 2019;697:134139.

88. Innocenti FD. Biodegradable plastics do not form chemically persistent microplastics. In: Cocca M, Di Pace E, Errico ME, et al., editors. Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Switzerland: Springer International Publishing; 2020. p. 82-8. Available from: http://dx.doi.org/10.1007/978-3-030-45909-3_15 [Last accessed on 19 Sep 2022].

89. Harris PT. The fate of microplastic in marine sedimentary environments: a review and synthesis. Mar Pollut Bull 2020;158:111398.

90. Dong Z, Qiu Y, Zhang W, Yang Z, Wei L. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Res 2018;143:518-26.

91. Pohl F, Eggenhuisen JT, Kane IA, Clare MA. Transport and burial of microplastics in deep-marine sediments by turbidity currents. Environ Sci Technol 2020;54:4180-9.

92. Chinaglia S, Tosin M, Degli-innocenti F. Biodegradation rate of biodegradable plastics at molecular level. Polym Degrad Stab 2018;147:237-44.

93. Tosin M, Pischedda A, Degli-innocenti F. Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polym Degrad Stab 2019;166:213-8.

94. Liu J, Wang P, Wang Y, et al. Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. J Hazard Mater 2022;437:129294.

95. Green DS, Boots B, Sigwart J, Jiang S, Rocha C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 2016;208:426-34.

96. Green DS. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ Pollut 2016;216:95-103.

97. Khalid A, Zalouk-Vergnoux A, Benali S, et al. Are bio-based and biodegradable microplastics impacting for blue mussel (Mytilus edulis)? Mar Pollut Bull 2021;167:112295.

98. Green DS, Colgan TJ, Thompson RC, Carolan JC. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ Pollut 2019;246:423-34.

99. Anderson G, Shenkar N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ Pollut 2021;268:115364.

100. Green DS, Boots B, O’Connor NE, Thompson R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ Sci Technol 2017;51:68-77.

101. Straub S, Hirsch PE, Burkhardt-Holm P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate gammarus fossarum. Int J Environ Res Public Health 2017;14:774.

102. Zimmermann L, Göttlich S, Oehlmann J, Wagner M, Völker C. What are the drivers of microplastic toxicity? Environ Pollut 2020;267:115392.

103. Malafaia G, Nascimento ÍF, Estrela FN, et al. Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Sci Total Environ 2021;783:146994.

104. Zhang X, Xia M, Su X, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J Hazard Mater 2021;413:125321.

105. Magni S, Bonasoro F, Della Torre C, Parenti CC, Maggioni D, Binelli A. Plastics and biodegradable plastics: ecotoxicity comparison between polyvinylchloride and Mater-Bi® micro-debris in a freshwater biological model. Sci Total Environ 2020;720:137602.

106. Chagas TQ, Araújo APDC, Malafaia G. Biomicroplastics versus conventional microplastics: an insight on the toxicity of these polymers in dragonfly larvae. Sci Total Environ 2021;761:143231.

107. Oliveira JPJ, Estrela FN, Rodrigues ASL, Guimarães ATB, Rocha TL, Malafaia G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. J Hazard Mater 2021;404:124152.

108. Schöpfer L, Menzel R, Schnepf U, et al. Microplastics effects on reproduction and body length of the soil-dwelling nematode caenorhabditis elegans. Front Environ Sci 2020;8:41.

109. Ding W, Li Z, Qi R, et al. Effect thresholds for the earthworm Eisenia fetida: toxicity comparison between conventional and biodegradable microplastics. Sci Total Environ 2021;781:146884.

110. Torres FG, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. Sorption of chemical contaminants on degradable and non-degradable microplastics: recent progress and research trends. Sci Total Environ 2021;757:143875.

111. Zuo LZ, Li HX, Lin L, et al. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere 2019;215:25-32.

112. Zhao L, Rong L, Xu J, Lian J, Wang L, Sun H. Sorption of five organic compounds by polar and nonpolar microplastics. Chemosphere 2020;257:127206.

113. Tubić A, Lončarski M, Maletić S, et al. Significance of chlorinated phenols adsorption on plastics and bioplastics during water treatment. Water 2019;11:2358.

114. Liu Y, Liu W, Yang X, Wang J, Lin H, Yang Y. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci Total Environ 2021;773:145643.

115. Song R, Sun Y, Li X, et al. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: a metagenomic perspective. Sci Total Environ 2022;828:154596.

116. Sintim HY, Bary AI, Hayes DG, et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci Total Environ 2019;675:686-93.

117. Long CM, Nascarella MA, Valberg PA. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut 2013;181:271-86.

118. Zimmermann L, Dierkes G, Ternes TA, Völker C, Wagner M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol 2019;53:11467-77.

119. Zimmermann L, Dombrowski A, Völker C, Wagner M. Are bioplastics and plant-based materials safer than conventional plastics? Environ Int 2020;145:106066.

120. Klein K, Piana T, Lauschke T, et al. Chemicals associated with biodegradable microplastic drive the toxicity to the freshwater oligochaete Lumbriculus variegatus. Aquat Toxicol 2021;231:105723.

121. Balestri E, Menicagli V, Ligorini V, Fulignati S, Raspolli Galletti AM, Lardicci C. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecological Indicators 2019;102:569-80.

122. Kennedy GL Jr. Toxicity of adipic acid. Drug Chem Toxicol 2002;25:191-202.

123. Serrano-ruíz H, Eras J, Martín-closas L, Pelacho A. Compounds released from unused biodegradable mulch materials after contact with water. Polym Degrad Stab 2020;178:109202.

124. Menicagli V, Balestri E, Lardicci C. Exposure of coastal dune vegetation to plastic bag leachates: a neglected impact of plastic litter. Sci Total Environ 2019;683:737-48.

125. Beriot N, Zomer P, Zornoza R, Geissen V. A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ 2020;8:e9876.

126. Green DS, Boots B, Blockley DJ, Rocha C, Thompson R. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environ Sci Technol 2015;49:5380-9.

127. Odobel C, Dussud C, Philip L, et al. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front Microbiol 2021;12:734782.

128. Eich A, Mildenberger T, Laforsch C, Weber M. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One 2015;10:e0137201.

129. Dussud C, Hudec C, George M, et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front Microbiol 2018;9:1571.

130. Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater - specific or general? Mar Environ Res 2018;142:147-54.

131. De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the belgian part of the north sea. Environ Sci Technol 2015;49:9629-38.

132. Yang K, Chen QL, Chen ML, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol 2020;54:11322-32.

133. Seeley ME, Song B, Passie R, Hale RC. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat Commun 2020;11:2372.

134. Yokota K, Mehlrose M. Lake phytoplankton assemblage altered by irregularly shaped pla body wash microplastics but not by PS calibration beads. Water 2020;12:2650.

135. Balestri E, Menicagli V, Vallerini F, Lardicci C. Biodegradable plastic bags on the seafloor: a future threat for seagrass meadows? Sci Total Environ 2017;605-606:755-63.

136. Posen ID, Jaramillo P, Landis AE, Griffin WM. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ Res Lett 2017;12:034024.

137. Paunonen S, Kamppuri T, Katajainen L, Hohenthal C, Heikkilä P, Harlin A. Environmental impact of cellulose carbamate fibers from chemically recycled cotton. J Clean Prod 2019;222:871-81.

138. Kunduru KR, Basu A, Domb AJ. Biodegradable polymers: medical applications. Encyclopedia of polymer science and technology. New Jersey: John Wiley & Sons, Inc.; 2016. p. 1-22.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/