REFERENCES

1. Bertoldi, K.; Vitelli, V.; Christensen, J.; van, H. M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2017, 2, 17066.

2. Tao, J.; Khosravi, H.; Deshpande, V.; Li, S. Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 2022, 10, e2204733.

3. Yang, X.; Zhou, Y.; Zhao, H.; et al. Morphing matter: from mechanical principles to robotic applications. Soft. Sci. 2023, 3, 38.

4. Jin, L.; Yang, S. Engineering kirigami frameworks toward real-world applications. Adv. Mater. 2024, 36, 2308560.

5. Zhang, Q.; Shi, Y.; Zhao, Z. A brief review of mechanical designs for additive manufactured soft materials. Soft. Sci. 2022, 2, 2.

6. Yang, X.; Forró, C.; Li, T. L.; et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 2024, 42, 1836-43.

7. Zhang, H.; Paik, J. Kirigami design and modeling for strong, lightweight metamaterials. Adv. Funct. Mater. 2022, 32, 2107401.

8. Meng, Z.; Liu, M.; Yan, H.; Genin, G. M.; Chen, C. Q. Deployable mechanical metamaterials with multistep programmable transformation. Sci. Adv. 2022, 8, eabn5460.

9. Wang, J.; Wang, R.; Zhu, Z.; Zhou, K.; Wang, D. Untethered kirigami soft robots with programmable locomotion. Appl. Phys. Rev. 2023, 10, 041405.

10. Kim, J.; Chamorro, L. P. Coupled mechanics in skin-interfaced electronics via computer vision methods. Soft. Sci. 2024, 4, 12.

11. Blees, M. K.; Barnard, A. W.; Rose, P. A.; et al. Graphene kirigami. Nature 2015, 524, 204-7.

12. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785-9.

13. Liu, Q.; Wang, W.; Sinhmar, H.; et al. Electronically configurable microscopic metasheet robots. Nat. Mater. 2025, 24, 109-15.

14. Yang, Y.; Vella, K.; Holmes, D. P. Grasping with kirigami shells. Sci. Robot. 2021, 6, eabd6426.

15. Hwang, D.; Barron, E. J.; Haque, A. B. M. T.; Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 2022, 7, eabg2171.

16. Babaee, S.; Pajovic, S.; Rafsanjani, A.; Shi, Y.; Bertoldi, K.; Traverso, G. Bioinspired kirigami metasurfaces as assistive shoe grips. Nat. Biomed. Eng. 2020, 4, 778-86.

17. Wang, W.; Li, C.; Rodrigue, H.; et al. Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 2017, 27, 1604214.

18. Wang, Y.; Wang, C.; Zhang, Y.; Tan, H. Graphene kirigami as reinforcement and interfacial bonding effect for toughness and strength of silicon-based nanocomposites. Comp. Mater. Sci. 2019, 159, 306-15.

19. Zhang, J.; Zhang, L.; Wang, Y.; Wang, Y.; Wang, C. Flexible kirigami with local cylindrical shell design for stretchable microstrip antenna. Compos. Struct. 2022, 296, 115879.

20. He, R.; Chen, Y.; Liang, J.; Sun, Y.; Feng, J.; Sareh, P. Crystallographically programmed kirigami metamaterials. J. Mech. Phys. Solids. 2024, 193, 105903.

21. Shi, P.; Chen, Y.; Feng, J.; Sareh, P. Highly stretchable graphene kirigami with tunable mechanical properties. Phys. Rev. E. 2024, 109, 035002.

22. An, N.; Domel, A. G.; Zhou, J.; Rafsanjani, A.; Bertoldi, K. Programmable hierarchical kirigami: programmable hierarchical kirigami. Adv. Funct. Mater. 2020, 30, 1906711.

23. Jin, L.; Forte, A. E.; Deng, B.; Rafsanjani, A.; Bertoldi, K. Kirigami-inspired inflatables with programmable shapes. Adv. Mater. 2020, 32, e2001863.

24. Chaudhary, G.; Niu, L.; Han, Q.; Lewicka, M.; Mahadevan, L. Geometric mechanics of ordered and disordered kirigami. Proc. R. Soc. A. 2023, 479, 20220822.

25. Dudte, L. H.; Choi, G. P. T.; Becker, K. P.; Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 2023, 3, 443-54.

26. Choi, G. P. T.; Liu, L.; Mahadevan, L. Explosive rigidity percolation in kirigami. Proc. R. Soc. A. 2023, 479, 20220798.

27. Liu, Z.; Hu, X.; Bo, R.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024, 384, 987-94.

28. Veenstra, J.; Gamayun, O.; Guo, X.; Sarvi, A.; Meinersen, C. V.; Coulais, C. Non-reciprocal topological solitons in active metamaterials. Nature 2024, 627, 528-33.

29. Coulais, C.; Sounas, D.; Alù, A. Static non-reciprocity in mechanical metamaterials. Nature 2017, 542, 461-4.

30. Isobe, M.; Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 2016, 6, 24758.

31. Xu, L.; Wang, X.; Kim, Y.; Shyu, T. C.; Lyu, J.; Kotov, N. A. Kirigami nanocomposites as wide-angle diffraction gratings. ACS. Nano. 2016, 10, 6156-62.

32. Wang, Y.; Wang, C.; Tan, H. Geometry-dependent stretchability and stiffness of ribbon kirigami based on large curvature curved beam model. Int. J. Solids. Struct. 2020, 182-183, 236-53.

33. Hong, Y.; Chi, Y.; Wu, S.; Li, Y.; Zhu, Y.; Yin, J. Boundary curvature guided programmable shape-morphing kirigami sheets. Nat. Commun. 2022, 13, 530.

34. Wang, Y.; Wang, C. Effect of temperature difference on the mechanical responses of ribbon kirigami: toward the highly stretchable conductors. Int. J. Mech. Sci. 2020, 168, 105301.

35. Wang, Y.; Zhao, W.; Du, Y.; Dai, Z.; Liu, Y.; Xu, F. Substantial curvature effects on compliant serpentine mechanics. Mech. Mater. 2023, 184, 104732.

36. Wang, Y.; Wang, C. Buckling of ultrastretchable kirigami metastructures for mechanical programmability and energy harvesting. Int. J. Solids. Struct. 2021, 213, 93-102.

37. Yang, Y.; Dias, M. A.; Holmes, D. P. Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2018, 2, 110601.

38. Wang, Y.; Wang, C. Mechanics of strain-limiting wrinkled kirigami for flexible devices: high flexibility, stretchability and compressibility. Int. J. Solids. Struct. 2022, 238, 111382.

39. Zhang, Y.; Wang, Y.; Tao, Q.; Liu, Y.; Wang, C. Deep learning of buckling instability in geometrically symmetry-breaking kirigami. Int. J. Mech. Sci. 2024, 280, 109331.

40. Tang, Y.; Lin, G.; Yang, S.; Yi, Y. K.; Kamien, R. D.; Yin, J. Programmable kiri-kirigami metamaterials. Adv. Mater. 2017, 29, 1604262.

41. Moshe, M.; Esposito, E.; Shankar, S.; et al. Kirigami mechanics as stress relief by elastic charges. Phys. Rev. Lett. 2019, 122, 048001.

42. Sadik, S.; Dias, M. A. On local kirigami mechanics I: isometric conical solutions. J. Mech. Phys. Solids. 2021, 151, 104370.

43. Sadik, S.; Walker, M. G.; Dias, M. A. On local kirigami mechanics II: stretchable creased solutions. J. Mech. Phys. Solids. 2022, 161, 104812.

44. Chen, Y.; He, R.; Hu, S.; et al. Design–material transition threshold of ribbon kirigami. Mater. Design. 2024, 242, 112979.

45. Hanakata, P. Z.; Cubuk, E. D.; Campbell, D. K.; Park, H. S. Accelerated search and design of stretchable graphene kirigami using machine learning. Phys. Rev. Lett. 2018, 121, 255304.

46. Liu, M.; Domino, L.; Vella, D. Tapered elasticæ as a route for axisymmetric morphing structures. Soft. Matter. 2020, 16, 7739-50.

47. Politecnica, A. S. SBINBEN: smart bio-inspired building envelopes. 2024. https://www.youtube.com/watch?v=b8JnACyN8x4. (accessed 2025-02-27).

48. Wang, Y.; Du, Y.; Xu, F. Strain stiffening retards growth instability in residually stressed biological tissues. J. Mech. Phys. Solids. 2023, 178, 105360.

49. Wang, Y.; Li, Z.; Chen, X.; et al. Electroactive differential growth and delayed instability in accelerated healing tissues. J. Mech. Phys. Solids. 2024, 193, 105867.

50. Fan, X.; Pan, Z.; Chen, S.; et al. Design and fabrication of a reconfigurable and flexible frequency selective surface with a buckling dipole via mechanical stretching. Soft. Sci. 2021, 1, 13.

51. Zhao, R.; Lin, S.; Yuk, H.; Zhao, X. Kirigami enhances film adhesion. Soft. Matter. 2018, 14, 2515-25.

52. Shuai, Y.; Zhao, J.; Bo, R.; Lan, Y.; Lv, Z.; Zhang, Y. A wrinkling-assisted strategy for controlled interface delamination in mechanically-guided 3D assembly. J. Mech. Phys. Solids. 2023, 173, 105203.

53. Huang, X.; Hai, Y.; Li, B.; Feng, X. Wrinkling of thin films on a microstructured substrate. Mech. Adv. Mater. Struct. 2018, 25, 975-81.

54. Zhang, Y.; Yang, J.; Liu, M.; Vella, D. Shape-morphing structures based on perforated kirigami. Extreme. Mech. Lett. 2022, 56, 101857.

55. Dang, X.; Gonella, S.; Paulino, G. H. Folding a single high-genus surface into a repertoire of metamaterial functionalities. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2413370121.

56. Shaat, M.; Moubarez, M. A.; Khan, M. O.; Khan, M. A.; Alzo'ubi, A. Metamaterials with giant and tailorable nonreciprocal elastic moduli. Phys. Rev. Appl. 2020, 14, 014005.

57. Janbaz, S.; Coulais, C. Diffusive kinks turn kirigami into machines. Nat. Commun. 2024, 15, 1255.

58. Dykstra, D. M. J.; Coulais, C. Inverse design of multishape metamaterials. Phys. Rev. Appl. 2024, 22, 064013.

59. Nassar, H.; Yousefzadeh, B.; Fleury, R.; et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 2020, 5, 667-85.

60. Morikawa, Y.; Yamagiwa, S.; Sawahata, H.; et al. Ultrastretchable kirigami bioprobes. Adv. Healthc. Mater. 2018, 7, 1701100.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/