REFERENCES
1. Yan, R.; Huang, Z.; Chen, Y.; Zhang, L.; Sheng, X. Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 2024, 277, 134233.
2. Wei, C.; Shi, L.; Li, M.; et al. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203.
3. Yan, R.; Huang, Z.; Zhang, L.; Chen, Y.; Sheng, X. Cellulose-reinforced foam-based phase change composites for multi-source driven energy storage and EMI shielding. Compos. Commun. 2024, 51, 102047.
4. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, e2211642.
5. Isari, A. A.; Ghaffarkhah, A.; Hashemi, S. A.; Wuttke, S.; Arjmand, M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 2024, 36, e2310683.
6. Yun, T.; Kim, H.; Iqbal, A.; et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, e1906769.
7. Park, B.; Hwang, S.; Lee, H.; et al. Absorption-dominant electromagnetic interference (EMI) shielding across multiple mmwave bands using conductive patterned magnetic composite and double-walled carbon nanotube film. Adv. Funct. Materials. 2024, 34, 2406197.
8. Liu, J.; Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Materials. 2024, 2407439.
9. Khan, T.; Khalid, M.; Andrew, J.; Ali, M.; Zheng, L.; Umer, R. Co-cured GNP films with liquid thermoplastic/glass fiber composites for superior EMI shielding and impact properties for space applications. Compos. Commun. 2023, 44, 101767.
10. Prabagar, C. J.; Anand, S.; Vu, M. C.; et al. Thermally insulating carbon nanotubes and copper ferrite based porous polydimethylsiloxane foams for absorption-dominant electromagnetic interference shielding performance. Compos. Commun. 2023, 42, 101691.
11. Zhong, X.; He, M.; Zhang, C.; Guo, Y.; Hu, J.; Gu, J. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Materials. 2024, 34, 2313544.
12. Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. Part. B. Eng. 2022, 233, 109652.
13. Liu, J.; Yu, M.; Yu, Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today. 2023, 66, 245-72.
14. Wang, L.; Ma, Z.; Zhang, Y.; Chen, L.; Cao, D.; Gu, J. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 2021, 1, 413-31.
15. Tian, K.; Hu, D.; Wei, Q.; Fu, Q.; Deng, H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 2023, 134, 106-31.
16. Wu, Y.; Dong, S.; Li, X.; et al. A stretchable all-nanofiber iontronic pressure sensor. Soft. Sci. 2023, 3, 33.
17. Zhang, D.; Sia, S. A.; Solco, S. F. D.; Xu, J.; Suwardi, A. Energy harvesting through thermoelectrics: topological designs and materials jetting technology. Soft. Sci. 2023, 3, 1.
18. Sushmita, K.; Madras, G.; Bose, S. Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS. Omega. 2020, 5, 4705-18.
19. Sahu, K. R.; De, U. Polymer composites for flexible electromagnetic shields. Macromol. Symp. 2018, 381, 1800097.
20. Zhang, W.; Zhang, Y.; Yan, X.; Hong, Y.; Yang, Z. Challenges and progress of chemical modification in piezoelectric composites and their applications. Soft. Sci. 2023, 3, 19.
21. Dai, F.; Geng, Q.; Hua, T.; Sheng, X.; Yin, L. Organic biodegradable piezoelectric materials and their potential applications as bioelectronics. Soft. Sci. 2023, 3, 7.
22. Liu, C.; Wang, S.; Feng, S. P.; Fang, N. X. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft. Sci. 2023, 3, 10.
23. Wang, Q.; Zhang, H.; Liu, J.; et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Materials. 2019, 29, 1806819.
24. Jia, X.; Shen, B.; Zhang, L.; Zheng, W. Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932-40.
25. Sang, G.; Xu, P.; Yan, T.; et al. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nanomicro. Lett. 2021, 13, 153.
26. Wang, M.; Tang, X.; Cai, J.; Wu, H.; Shen, J.; Guo, S. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021, 177, 377-402.
27. Nam, S.; Park, C.; Sunwoo, S.; et al. Soft conductive nanocomposites for recording biosignals on skin. Soft. Sci. 2023, 3, 28.
28. Kim, S. D.; Park, K.; Lee, S.; et al. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft. Sci. 2023, 3, 18.
29. Silva AC, Paterson TE, Minev IR. Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft. Sci. 2023, 3, 3.
30. Lin, J.; Su, J.; Weng, M.; et al. Applications of flexible polyimide: barrier material, sensor material, and functional material. Soft. Sci. 2022, 3, 2.
31. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Materials. 2020, 30, 2000883.
32. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS. Nano. 2018, 12, 4583-93.
33. Liu, H.; Wang, Z.; Wang, J.; et al. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale 2022, 14, 9218-47.
34. Sharma, A.; Kumar, R.; Patle, V. K.; et al. Phenol formaldehyde resin derived carbon-MCMB composite foams for electromagnetic interference shielding and thermal management applications. Compos. Commun. 2020, 22, 100433.
35. Łapińska, A.; Grochowska, N.; Filak, K.; et al. Flexible carbon-based fluoropolymer composites for effective EMI shielding and heat dissipation. Polym. Compos. 2024, 45, 4319-37.
36. Yue, Y.; Li, X.; Zhao, Z.; Wang, H.; Guo, X. Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft. Sci. 2023, 3, 13.
37. Yu, H.; Gai, M.; Liu, L.; Chen, F.; Bian, J.; Huang, Y. Laser-induced direct graphene patterning: from formation mechanism to flexible applications. Soft. Sci. 2023, 3, 4.
38. Ke, X.; Mu, X.; Chen, S.; et al. Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring human motion. Soft. Sci. 2023, 3, 21.
39. Mani, D.; Vu, M. C.; Anand, S.; et al. Elongated liquid metal based self-healing polyurethane composites for tunable thermal conductivity and electromagnetic interference shielding. Compos. Commun. 2023, 44, 101735.
40. Li, G.; Liu, S.; Xu, Z.; Guo, J.; Tang, S.; Ma, X. Recent advancements in liquid metal enabled flexible and wearable biosensors. Soft. Sci. 2023, 3, 37.
41. Bai, Y.; Zhang, J.; Lu, C.; Rao, W. Liquid metals nanotransformer for healthcare biosensors. Soft. Sci. 2023, 3, 40.
42. Peng, M.; Ma, B.; Li, G.; et al. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid. Soft. Sci. 2023, 3, 36.
43. Wu, P.; Yiu, C. K.; Huang, X.; et al. Liquid metal-based strain-sensing glove for human-machine interaction. Soft. Sci. 2023, 3, 35.
44. Gong, K.; Peng, Y.; Liu, A.; Qi, S.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part. A. Appl. Sci. Manuf. 2024, 176, 107857.
45. Zhao, Y.; Hao, L.; Zhang, X.; et al. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small. Sci. 2022, 2, 2100077.
46. Zhao, B.; Hamidinejad, M.; Wang, S.; et al. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A. 2021, 9, 8896-949.
47. Yun, J. Recent progress in thermal management for flexible/wearable devices. Soft. Sci. 2023, 3, 12.
48. Xiao, Y.; Wu, J.; Zhang, Y. Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers. Soft. Sci. 2023, 3, 11.
49. Cao, Y.; Lian, P.; Chen, Y.; Zhang, L.; Sheng, X. Novel organically modified disodium hydrogen phosphate dodecahydrate-based phase change composite for efficient solar energy storage and conversion. Sol. Energy. Mater. Sol. Cells. 2024, 268, 112747.
50. Huang, D.; Zhang, L.; Sheng, X.; Chen, Y. Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 2023, 232, 121041.
51. Weng, M.; Lin, J.; Yang, Y.; et al. MXene-based phase change materials for multi-source driven energy storage, conversion and applications. Sol. Energy. Mater. Sol. Cells. 2024, 272, 112915.
52. Lian, P.; Yan, R.; Wu, Z.; et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid. Mater. 2023, 6, 655.
53. Han, Y.; Ruan, K.; He, X.; et al. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 2024, 136, e202401538.
54. Wang, S.; Feng, D.; Zhang, Z.; et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897-906.
55. Ma, T.; Zhang, Y.; Ruan, K.; et al. Advances in 3D printing for polymer composites: a review. InfoMat 2024, 6, e12568.
56. Zhang, D.; Liang, S.; Chai, J.; et al. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids. 2019, 134, 77-82.
57. Wang, L.; Bai, X.; Wang, M. Facile preparation, characterization and highly effective microwave absorption performance of porous α-Fe2O3 nanorod–graphene composites. J. Mater. Sci. Mater. Electron. 2018, 29, 3381-90.
58. Zhang, S.; Jia, Z.; Cheng, B.; Zhao, Z.; Lu, F.; Wu, G. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440-60.
59. He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Materials. 2024, 34, 2409675.
60. Chen, Y.; Meng, Y.; Zhang, J.; et al. Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nanomicro. Lett. 2024, 16, 196.
61. He, M.; Hu, J.; Yan, H.; et al. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Materials. , 2024, 2316691.
62. Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309010.
63. Zhang, W.; Wang, J.; Wei, L.; Jin, H.; Bao, Y.; Ma, J. Preparation and application of functional polymer-based electromagnetic shielding materials. Progress. Chem. 2023, 35, 1065-76.
64. Cao, X.; Liu, X.; Zhu, J.; Jia, Z.; Liu, J.; Wu, G. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid. Interface. Sci. 2023, 634, 268-78.
65. Chai, J.; Cheng, J.; Zhang, D.; et al. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloys. Compd. 2020, 829, 154531.
66. Zhang, H.; Liu, T.; Huang, Z.; et al. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics. 2022, 8, 327-34.
67. Gao, Z.; Song, Y.; Zhang, S.; et al. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid. Interface. Sci. 2021, 600, 288-98.
68. Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.
69. Gao, Z.; Zhao, Z.; Lan, D.; Kou, K.; Zhang, J.; Wu, H. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents. J. Mater. Sci. Technol. 2021, 82, 69-79.
70. Lan, D.; Li, H.; Wang, M.; et al. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630.
71. Lin, X.; Han, M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft. Sci. 2023, 3, 14.
72. Zhang, H.; Sun, K.; Sun, K.; Chen, L.; Wu, G. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. JMater. Sci. Technol. 2023, 158, 242-52.
73. Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nanomicro. Lett. 2023, 15, 137.
74. Xu, H.; Yin, X.; Zhu, M.; et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019, 142, 346-53.
75. Luo, J.; Zhang, K.; Cheng, M.; Gu, M.; Sun, X. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.
76. Wang, Y.; Haidry, A. A.; Liu, Y.; et al. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO2/Co/C heterostructures. Carbon 2024, 216, 118497.
77. Salas, A.; Pazniak, H.; Gonzalez-julian, J.; et al. Development of polymeric/MXenes composites towards 3D printable electronics. Compos. Part. B. Eng. 2023, 263, 110854.
78. Jin, X.; Wang, J.; Dai, L.; et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.
79. Bai, S.; Guo, X.; Zhang, X.; Zhao, X.; Yang, H. Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part. A. Appl. Sci. Manuf. 2021, 149, 106545.
80. Wang, H.; Deng, Y.; Liu, Y.; et al. In situ preparation of light-driven cellulose-Mxene aerogels based composite phase change materials with simultaneously enhanced light-to-heat conversion, heat transfer and heat storage. Compos. Part. A. Appl. Sci. Manuf. 2022, 155, 106853.
81. Zheng, J.; Deng, Y.; Liu, Y.; et al. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications. Chem. Eng. J. 2023, 453, 139727.
82. Zeng, Z. H.; Wu, N.; Wei, J. J.; et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 59.
83. Liu, J.; Zhang, H. B.; Sun, R.; et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.
84. Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, e2101951.
85. Wu, L.; Li, Y.; Wang, B.; et al. Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding. Mater. Design. 2018, 159, 47-56.
86. Tan, Y.; Li, J.; Gao, Y.; Li, J.; Guo, S.; Wang, M. A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 2018, 458, 236-44.
87. Xing, D.; Lu, L.; Xie, Y.; Tang, Y.; Teh, K. S. Highly flexible and ultra-thin carbon-fabric/Ag/waterborne polyurethane film for ultra-efficient EMI shielding. Mater. Design. 2020, 185, 108227.
88. Zhao, B.; Wang, S.; Zhao, C.; et al. Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 2018, 127, 469-78.
89. Liang, C.; Ruan, K.; Zhang, Y.; Gu, J. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS. Appl. Mater. Interfaces. 2020, 12, 18023-31.
90. Cheng, M.; Ying, M.; Zhao, R.; et al. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS. Nano. 2022, 16, 16996-7007.
91. Cheng, H.; Pan, Y.; Chen, Q.; et al. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid. Mater. 2021, 4, 505-13.
92. Madani, M. Conducting carbon black filled NR/IIR blend vulcanizates: assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J. Polym. Res. 2010, 17, 53-62.
93. Tibbetts, G.; Lake, M.; Strong, K.; Rice, B. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 2007, 67, 1709-18.
94. Nayak, L.; Khastgir, D.; Chaki, T. K. A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites. J. Mater. Sci. 2013, 48, 1492-502.
95. Liang, J.; Wang, Y.; Huang, Y.; et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922-5.
96. Hsiao, S.; Ma, C. M.; Tien, H.; et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 2013, 60, 57-66.
97. Song, W.; Cao, M.; Lu, M.; et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 2014, 66, 67-76.
98. Song, P.; Liu, B.; Liang, C.; et al. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nanomicro. Lett. 2021, 13, 91.
99. Tahalyani, J.; Akhtar, M. J.; Kar, K. K. Flexible, stretchable and lightweight polyurethane and graphene nanoplatelets nanocomposite for high performance EMI shielding application. Mater. Today. Commun. 2022, 33, 104586.
100. Zeng, Z.; Chen, M.; Jin, H.; et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768-77.
101. Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126-34.
102. Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563-8.
103. Chen, M.; Zhang, L.; Duan, S.; et al. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 2014, 6, 3796-803.
104. Jia, L.; Li, Y.; Yan, D. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 2017, 121, 267-73.
105. Kong, L.; Yin, X.; Xu, H.; et al. Powerful absorbing and lightweight electromagnetic shielding CNTs/rGO composite. Carbon 2019, 145, 61-6.
106. Kumar, R.; Sahoo, S.; Joanni, E.; et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 2021, 177, 304-31.
107. Zare, Y.; Rhee, K. Y.; Park, S. A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results. Phys. 2019, 14, 102406.
108. Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D.; Dhakate, S. R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part. B. Eng. 2019, 160, 131-9.
109. Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 188.
110. Shen, R.; Lian, P.; Cao, Y.; Chen, Y.; Zhang, L.; Sheng, X. All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J. Energy. Storage. 2022, 54, 105338.
111. Han, Y.; Ruan, K.; Gu, J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216093.
112. Su, J.; Lin, J.; Cao, Y.; et al. Experimental investigation and numerical simulation on microwave thermal conversion storage properties of multi-level conductive porous phase change materials and its multifunctional applications. Appl. Therm. Eng. 2024, 253, 123774.
113. Chen, H.; Ma, Y.; Sheng, X.; Chen, Y. Achieving heat storage coatings from ethylene vinyl acetate copolymers and phase change nano-capsules with excellent flame-retardant and thermal comfort performances. Prog. Org. Coat. 2024, 192, 108478.
114. Ma, Y.; Wang, H.; Zhang, L.; Sheng, X.; Chen, Y. Flexible phase change composite films with improved thermal conductivity and superb thermal reliability for electronic chip thermal management. Compos. Part. A. Appl. Sci. Manuf. 2022, 163, 107203.
115. Goeke, J.; Schwamborn, E. Phase change material in spherical capsules for hybrid thermal storage. Chem. Ing. Tech. 2020, 92, 1098-108.
116. Latibari S, Mehrali M, Mehrali M, Mahlia TM, Metselaar HS. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties. ScientificWorldJournal 2014, 2014, 379582.
117. Yin, G.; Díaz, P. J. L.; Wang, D. Fully bio-based Poly (Glycerol-Itaconic acid) as supporter for PEG based form stable phase change materials. Compos. Commun. 2021, 27, 100893.
118. Mert, H. H. PolyHIPE composite based-form stable phase change material for thermal energy storage. Int. J. Energy. Res. 2020, 44, 6583-94.
119. Maqbool, M.; Aftab, W.; Bashir, A.; Usman, A.; Guo, H.; Bai, S. Engineering of polymer-based materials for thermal management solutions. Compos. Commun. 2022, 29, 101048.
120. Cao, Y.; Li, W.; Huang, D.; et al. One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol. Energy. Mater. Sol. Cells. 2022, 241, 111729.
121. Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy. Build. 2017, 144, 276-94.
122. Shen, J.; Ma, Y.; Zhou, F.; Sheng, X.; Chen, Y. Thermophysical properties investigation of phase change microcapsules with low supercooling and high energy storage capability: potential for efficient solar energy thermal management. J. Mater. Sci. Technol. 2024, 191, 199-208.
123. Ma, Y.; Shen, J.; Li, T.; Sheng, X.; Chen, Y. A “net-ball” structure fiber membrane with electro-/photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy. Mater. Sol. Cells. 2024, 276, 113078.
124. Lin, P.; Xie, J.; He, Y.; et al. MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy. Mater. Sol. Cells. 2020, 206, 110229.
125. Luo, Y.; Xie, Y.; Jiang, H.; et al. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.
126. Liu, Y.; Tang, Z.; Huang, Z.; et al. Flexible phase change composites based on hierarchically porous polypyrrole scaffold for broad-band solar absorption and efficient solar-thermal-electric energy conversion. Compos. Sci. Technol. 2024, 250, 110519.
127. Cheng, P.; Gao, H.; Chen, X.; et al. Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem. Eng. J. 2020, 397, 125330.
128. Chen, X.; Gao, H.; Hai, G.; et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy. Storage. Mater. 2020, 26, 129-37.
129. Zhao, X.; Lei, K.; Wang, S.; Wang, B.; Huang, L.; Zou, D. A shape-memory, room-temperature flexible phase change material based on PA/TPEE/EG for battery thermal management. Chem. Eng. J. 2023, 463, 142514.
130. Wu, W.; Wu, W.; Wang, S. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy. 2019, 236, 10-21.
131. Wu, T.; Hu, Y.; Rong, H.; Wang, C. SEBS-based composite phase change material with thermal shape memory for thermal management applications. Energy 2021, 221, 119900.
132. Wu, S.; Li, T.; Wu, M.; et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A. 2020, 8, 20011-20.
133. Wu, M.; Li, T.; Wang, P.; Wu, S.; Wang, R.; Lin, J. Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small 2022, 18, e2105647.
134. Huang, Y.; Luo, W.; Chen, W.; et al. Self-healing, adaptive and shape memory polymer-based thermal interface phase change materials via boron ester cross-linking. Chem. Eng. J. 2024, 496, 153789.
135. Zhang, S.; Cheng, B.; Jia, Z.; et al. The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1658-98.
136. Xu, W.; Yang, W.; Su, J.; et al. Diatom-based biomass composites phase change materials with high thermal conductivity for battery thermal management. J. Energy. Storage. 2024, 96, 112737.
137. Wang, C.; Liu, Q.; Song, H.; Jiang, Q. Vacuum filtration method towards flexible thermoelectric films. Soft. Sci. 2023, 3, 34.
138. Hong, M.; Sun, S.; Lyu, W.; et al. Advances in printing techniques for thermoelectric materials and devices. Soft. Sci. 2023, 3, 29.
139. Shen, L.; Liu, M.; Liu, P.; et al. A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower without degenerated conductivity. Soft. Sci. 2023, 3, 20.
140. Li, X.; Sheng, X.; Fang, Y.; et al. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Materials. 2023, 33, 2212776.
141. Gong, S.; Sheng, X.; Li, X.; et al. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick–Mortar” sandwich structure. Adv. Funct. Materials. 2022, 32, 2200570.
142. Yang, Z.; Ma, Y.; Jia, S.; et al. 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing. ACS. Appl. Mater. Interfaces. 2022, 14, 7283-91.
143. Ge, X.; Tay, G.; Hou, Y.; et al. Flexible and leakage-proof phase change composite for microwave attenuation and thermal management. Carbon 2023, 210, 118084.
144. Li, X.; Sheng, M.; Gong, S.; et al. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 2022, 430, 132928.
145. Liang, Y.; Tong, Y.; Tao, Z.; Guo, Q.; Hao, B.; Liu, Z. Multifunctional shape-stabilized phase change materials with enhanced thermal conductivity and electromagnetic interference shielding effectiveness for electronic devices. Macro. Mater. Eng. 2021, 306, 2100055.
146. Hu, B.; Guo, H.; Li, J.; et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding. Compos. Part. B. Eng. 2023, 266, 110998.
147. Guo, H.; Hu, B.; Shan, H.; Li, Z.; Qi, W.; Li, B. Magnetically assembled flexible phase change composites with vertically aligned structures for thermal management and electromagnetic interference shielding. Chem. Eng. J. 2024, 495, 153361.
148. Xiao, Y.; He, Y.; Wang, R.; et al. Mussel-inspired strategy to construct 3D silver nanoparticle network in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Compos. Part. B. Eng. 2022, 239, 109962.