REFERENCES

1. Yan, R.; Huang, Z.; Chen, Y.; Zhang, L.; Sheng, X. Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 2024, 277, 134233.

2. Wei, C.; Shi, L.; Li, M.; et al. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203.

3. Yan, R.; Huang, Z.; Zhang, L.; Chen, Y.; Sheng, X. Cellulose-reinforced foam-based phase change composites for multi-source driven energy storage and EMI shielding. Compos. Commun. 2024, 51, 102047.

4. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, e2211642.

5. Isari, A. A.; Ghaffarkhah, A.; Hashemi, S. A.; Wuttke, S.; Arjmand, M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 2024, 36, e2310683.

6. Yun, T.; Kim, H.; Iqbal, A.; et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, e1906769.

7. Park, B.; Hwang, S.; Lee, H.; et al. Absorption-dominant electromagnetic interference (EMI) shielding across multiple mmwave bands using conductive patterned magnetic composite and double-walled carbon nanotube film. Adv. Funct. Materials. 2024, 34, 2406197.

8. Liu, J.; Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Materials. 2024, 2407439.

9. Khan, T.; Khalid, M.; Andrew, J.; Ali, M.; Zheng, L.; Umer, R. Co-cured GNP films with liquid thermoplastic/glass fiber composites for superior EMI shielding and impact properties for space applications. Compos. Commun. 2023, 44, 101767.

10. Prabagar, C. J.; Anand, S.; Vu, M. C.; et al. Thermally insulating carbon nanotubes and copper ferrite based porous polydimethylsiloxane foams for absorption-dominant electromagnetic interference shielding performance. Compos. Commun. 2023, 42, 101691.

11. Zhong, X.; He, M.; Zhang, C.; Guo, Y.; Hu, J.; Gu, J. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Materials. 2024, 34, 2313544.

12. Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. Part. B. Eng. 2022, 233, 109652.

13. Liu, J.; Yu, M.; Yu, Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today. 2023, 66, 245-72.

14. Wang, L.; Ma, Z.; Zhang, Y.; Chen, L.; Cao, D.; Gu, J. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 2021, 1, 413-31.

15. Tian, K.; Hu, D.; Wei, Q.; Fu, Q.; Deng, H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 2023, 134, 106-31.

16. Wu, Y.; Dong, S.; Li, X.; et al. A stretchable all-nanofiber iontronic pressure sensor. Soft. Sci. 2023, 3, 33.

17. Zhang, D.; Sia, S. A.; Solco, S. F. D.; Xu, J.; Suwardi, A. Energy harvesting through thermoelectrics: topological designs and materials jetting technology. Soft. Sci. 2023, 3, 1.

18. Sushmita, K.; Madras, G.; Bose, S. Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS. Omega. 2020, 5, 4705-18.

19. Sahu, K. R.; De, U. Polymer composites for flexible electromagnetic shields. Macromol. Symp. 2018, 381, 1800097.

20. Zhang, W.; Zhang, Y.; Yan, X.; Hong, Y.; Yang, Z. Challenges and progress of chemical modification in piezoelectric composites and their applications. Soft. Sci. 2023, 3, 19.

21. Dai, F.; Geng, Q.; Hua, T.; Sheng, X.; Yin, L. Organic biodegradable piezoelectric materials and their potential applications as bioelectronics. Soft. Sci. 2023, 3, 7.

22. Liu, C.; Wang, S.; Feng, S. P.; Fang, N. X. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft. Sci. 2023, 3, 10.

23. Wang, Q.; Zhang, H.; Liu, J.; et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Materials. 2019, 29, 1806819.

24. Jia, X.; Shen, B.; Zhang, L.; Zheng, W. Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932-40.

25. Sang, G.; Xu, P.; Yan, T.; et al. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nanomicro. Lett. 2021, 13, 153.

26. Wang, M.; Tang, X.; Cai, J.; Wu, H.; Shen, J.; Guo, S. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021, 177, 377-402.

27. Nam, S.; Park, C.; Sunwoo, S.; et al. Soft conductive nanocomposites for recording biosignals on skin. Soft. Sci. 2023, 3, 28.

28. Kim, S. D.; Park, K.; Lee, S.; et al. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft. Sci. 2023, 3, 18.

29. Silva AC, Paterson TE, Minev IR. Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft. Sci. 2023, 3, 3.

30. Lin, J.; Su, J.; Weng, M.; et al. Applications of flexible polyimide: barrier material, sensor material, and functional material. Soft. Sci. 2022, 3, 2.

31. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Materials. 2020, 30, 2000883.

32. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS. Nano. 2018, 12, 4583-93.

33. Liu, H.; Wang, Z.; Wang, J.; et al. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale 2022, 14, 9218-47.

34. Sharma, A.; Kumar, R.; Patle, V. K.; et al. Phenol formaldehyde resin derived carbon-MCMB composite foams for electromagnetic interference shielding and thermal management applications. Compos. Commun. 2020, 22, 100433.

35. Łapińska, A.; Grochowska, N.; Filak, K.; et al. Flexible carbon-based fluoropolymer composites for effective EMI shielding and heat dissipation. Polym. Compos. 2024, 45, 4319-37.

36. Yue, Y.; Li, X.; Zhao, Z.; Wang, H.; Guo, X. Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft. Sci. 2023, 3, 13.

37. Yu, H.; Gai, M.; Liu, L.; Chen, F.; Bian, J.; Huang, Y. Laser-induced direct graphene patterning: from formation mechanism to flexible applications. Soft. Sci. 2023, 3, 4.

38. Ke, X.; Mu, X.; Chen, S.; et al. Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring human motion. Soft. Sci. 2023, 3, 21.

39. Mani, D.; Vu, M. C.; Anand, S.; et al. Elongated liquid metal based self-healing polyurethane composites for tunable thermal conductivity and electromagnetic interference shielding. Compos. Commun. 2023, 44, 101735.

40. Li, G.; Liu, S.; Xu, Z.; Guo, J.; Tang, S.; Ma, X. Recent advancements in liquid metal enabled flexible and wearable biosensors. Soft. Sci. 2023, 3, 37.

41. Bai, Y.; Zhang, J.; Lu, C.; Rao, W. Liquid metals nanotransformer for healthcare biosensors. Soft. Sci. 2023, 3, 40.

42. Peng, M.; Ma, B.; Li, G.; et al. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid. Soft. Sci. 2023, 3, 36.

43. Wu, P.; Yiu, C. K.; Huang, X.; et al. Liquid metal-based strain-sensing glove for human-machine interaction. Soft. Sci. 2023, 3, 35.

44. Gong, K.; Peng, Y.; Liu, A.; Qi, S.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part. A. Appl. Sci. Manuf. 2024, 176, 107857.

45. Zhao, Y.; Hao, L.; Zhang, X.; et al. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small. Sci. 2022, 2, 2100077.

46. Zhao, B.; Hamidinejad, M.; Wang, S.; et al. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A. 2021, 9, 8896-949.

47. Yun, J. Recent progress in thermal management for flexible/wearable devices. Soft. Sci. 2023, 3, 12.

48. Xiao, Y.; Wu, J.; Zhang, Y. Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers. Soft. Sci. 2023, 3, 11.

49. Cao, Y.; Lian, P.; Chen, Y.; Zhang, L.; Sheng, X. Novel organically modified disodium hydrogen phosphate dodecahydrate-based phase change composite for efficient solar energy storage and conversion. Sol. Energy. Mater. Sol. Cells. 2024, 268, 112747.

50. Huang, D.; Zhang, L.; Sheng, X.; Chen, Y. Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 2023, 232, 121041.

51. Weng, M.; Lin, J.; Yang, Y.; et al. MXene-based phase change materials for multi-source driven energy storage, conversion and applications. Sol. Energy. Mater. Sol. Cells. 2024, 272, 112915.

52. Lian, P.; Yan, R.; Wu, Z.; et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid. Mater. 2023, 6, 655.

53. Han, Y.; Ruan, K.; He, X.; et al. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 2024, 136, e202401538.

54. Wang, S.; Feng, D.; Zhang, Z.; et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897-906.

55. Ma, T.; Zhang, Y.; Ruan, K.; et al. Advances in 3D printing for polymer composites: a review. InfoMat 2024, 6, e12568.

56. Zhang, D.; Liang, S.; Chai, J.; et al. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids. 2019, 134, 77-82.

57. Wang, L.; Bai, X.; Wang, M. Facile preparation, characterization and highly effective microwave absorption performance of porous α-Fe2O3 nanorod–graphene composites. J. Mater. Sci. Mater. Electron. 2018, 29, 3381-90.

58. Zhang, S.; Jia, Z.; Cheng, B.; Zhao, Z.; Lu, F.; Wu, G. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440-60.

59. He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Materials. 2024, 34, 2409675.

60. Chen, Y.; Meng, Y.; Zhang, J.; et al. Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nanomicro. Lett. 2024, 16, 196.

61. He, M.; Hu, J.; Yan, H.; et al. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Materials. , 2024, 2316691.

62. Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309010.

63. Zhang, W.; Wang, J.; Wei, L.; Jin, H.; Bao, Y.; Ma, J. Preparation and application of functional polymer-based electromagnetic shielding materials. Progress. Chem. 2023, 35, 1065-76.

64. Cao, X.; Liu, X.; Zhu, J.; Jia, Z.; Liu, J.; Wu, G. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid. Interface. Sci. 2023, 634, 268-78.

65. Chai, J.; Cheng, J.; Zhang, D.; et al. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloys. Compd. 2020, 829, 154531.

66. Zhang, H.; Liu, T.; Huang, Z.; et al. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics. 2022, 8, 327-34.

67. Gao, Z.; Song, Y.; Zhang, S.; et al. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid. Interface. Sci. 2021, 600, 288-98.

68. Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.

69. Gao, Z.; Zhao, Z.; Lan, D.; Kou, K.; Zhang, J.; Wu, H. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents. J. Mater. Sci. Technol. 2021, 82, 69-79.

70. Lan, D.; Li, H.; Wang, M.; et al. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630.

71. Lin, X.; Han, M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft. Sci. 2023, 3, 14.

72. Zhang, H.; Sun, K.; Sun, K.; Chen, L.; Wu, G. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. JMater. Sci. Technol. 2023, 158, 242-52.

73. Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nanomicro. Lett. 2023, 15, 137.

74. Xu, H.; Yin, X.; Zhu, M.; et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019, 142, 346-53.

75. Luo, J.; Zhang, K.; Cheng, M.; Gu, M.; Sun, X. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

76. Wang, Y.; Haidry, A. A.; Liu, Y.; et al. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO2/Co/C heterostructures. Carbon 2024, 216, 118497.

77. Salas, A.; Pazniak, H.; Gonzalez-julian, J.; et al. Development of polymeric/MXenes composites towards 3D printable electronics. Compos. Part. B. Eng. 2023, 263, 110854.

78. Jin, X.; Wang, J.; Dai, L.; et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

79. Bai, S.; Guo, X.; Zhang, X.; Zhao, X.; Yang, H. Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part. A. Appl. Sci. Manuf. 2021, 149, 106545.

80. Wang, H.; Deng, Y.; Liu, Y.; et al. In situ preparation of light-driven cellulose-Mxene aerogels based composite phase change materials with simultaneously enhanced light-to-heat conversion, heat transfer and heat storage. Compos. Part. A. Appl. Sci. Manuf. 2022, 155, 106853.

81. Zheng, J.; Deng, Y.; Liu, Y.; et al. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications. Chem. Eng. J. 2023, 453, 139727.

82. Zeng, Z. H.; Wu, N.; Wei, J. J.; et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 59.

83. Liu, J.; Zhang, H. B.; Sun, R.; et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

84. Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, e2101951.

85. Wu, L.; Li, Y.; Wang, B.; et al. Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding. Mater. Design. 2018, 159, 47-56.

86. Tan, Y.; Li, J.; Gao, Y.; Li, J.; Guo, S.; Wang, M. A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 2018, 458, 236-44.

87. Xing, D.; Lu, L.; Xie, Y.; Tang, Y.; Teh, K. S. Highly flexible and ultra-thin carbon-fabric/Ag/waterborne polyurethane film for ultra-efficient EMI shielding. Mater. Design. 2020, 185, 108227.

88. Zhao, B.; Wang, S.; Zhao, C.; et al. Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 2018, 127, 469-78.

89. Liang, C.; Ruan, K.; Zhang, Y.; Gu, J. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS. Appl. Mater. Interfaces. 2020, 12, 18023-31.

90. Cheng, M.; Ying, M.; Zhao, R.; et al. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS. Nano. 2022, 16, 16996-7007.

91. Cheng, H.; Pan, Y.; Chen, Q.; et al. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid. Mater. 2021, 4, 505-13.

92. Madani, M. Conducting carbon black filled NR/IIR blend vulcanizates: assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J. Polym. Res. 2010, 17, 53-62.

93. Tibbetts, G.; Lake, M.; Strong, K.; Rice, B. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 2007, 67, 1709-18.

94. Nayak, L.; Khastgir, D.; Chaki, T. K. A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites. J. Mater. Sci. 2013, 48, 1492-502.

95. Liang, J.; Wang, Y.; Huang, Y.; et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922-5.

96. Hsiao, S.; Ma, C. M.; Tien, H.; et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 2013, 60, 57-66.

97. Song, W.; Cao, M.; Lu, M.; et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 2014, 66, 67-76.

98. Song, P.; Liu, B.; Liang, C.; et al. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nanomicro. Lett. 2021, 13, 91.

99. Tahalyani, J.; Akhtar, M. J.; Kar, K. K. Flexible, stretchable and lightweight polyurethane and graphene nanoplatelets nanocomposite for high performance EMI shielding application. Mater. Today. Commun. 2022, 33, 104586.

100. Zeng, Z.; Chen, M.; Jin, H.; et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768-77.

101. Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126-34.

102. Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563-8.

103. Chen, M.; Zhang, L.; Duan, S.; et al. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 2014, 6, 3796-803.

104. Jia, L.; Li, Y.; Yan, D. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 2017, 121, 267-73.

105. Kong, L.; Yin, X.; Xu, H.; et al. Powerful absorbing and lightweight electromagnetic shielding CNTs/rGO composite. Carbon 2019, 145, 61-6.

106. Kumar, R.; Sahoo, S.; Joanni, E.; et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 2021, 177, 304-31.

107. Zare, Y.; Rhee, K. Y.; Park, S. A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results. Phys. 2019, 14, 102406.

108. Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D.; Dhakate, S. R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part. B. Eng. 2019, 160, 131-9.

109. Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 188.

110. Shen, R.; Lian, P.; Cao, Y.; Chen, Y.; Zhang, L.; Sheng, X. All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J. Energy. Storage. 2022, 54, 105338.

111. Han, Y.; Ruan, K.; Gu, J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216093.

112. Su, J.; Lin, J.; Cao, Y.; et al. Experimental investigation and numerical simulation on microwave thermal conversion storage properties of multi-level conductive porous phase change materials and its multifunctional applications. Appl. Therm. Eng. 2024, 253, 123774.

113. Chen, H.; Ma, Y.; Sheng, X.; Chen, Y. Achieving heat storage coatings from ethylene vinyl acetate copolymers and phase change nano-capsules with excellent flame-retardant and thermal comfort performances. Prog. Org. Coat. 2024, 192, 108478.

114. Ma, Y.; Wang, H.; Zhang, L.; Sheng, X.; Chen, Y. Flexible phase change composite films with improved thermal conductivity and superb thermal reliability for electronic chip thermal management. Compos. Part. A. Appl. Sci. Manuf. 2022, 163, 107203.

115. Goeke, J.; Schwamborn, E. Phase change material in spherical capsules for hybrid thermal storage. Chem. Ing. Tech. 2020, 92, 1098-108.

116. Latibari S, Mehrali M, Mehrali M, Mahlia TM, Metselaar HS. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties. ScientificWorldJournal 2014, 2014, 379582.

117. Yin, G.; Díaz, P. J. L.; Wang, D. Fully bio-based Poly (Glycerol-Itaconic acid) as supporter for PEG based form stable phase change materials. Compos. Commun. 2021, 27, 100893.

118. Mert, H. H. PolyHIPE composite based-form stable phase change material for thermal energy storage. Int. J. Energy. Res. 2020, 44, 6583-94.

119. Maqbool, M.; Aftab, W.; Bashir, A.; Usman, A.; Guo, H.; Bai, S. Engineering of polymer-based materials for thermal management solutions. Compos. Commun. 2022, 29, 101048.

120. Cao, Y.; Li, W.; Huang, D.; et al. One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol. Energy. Mater. Sol. Cells. 2022, 241, 111729.

121. Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy. Build. 2017, 144, 276-94.

122. Shen, J.; Ma, Y.; Zhou, F.; Sheng, X.; Chen, Y. Thermophysical properties investigation of phase change microcapsules with low supercooling and high energy storage capability: potential for efficient solar energy thermal management. J. Mater. Sci. Technol. 2024, 191, 199-208.

123. Ma, Y.; Shen, J.; Li, T.; Sheng, X.; Chen, Y. A “net-ball” structure fiber membrane with electro-/photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy. Mater. Sol. Cells. 2024, 276, 113078.

124. Lin, P.; Xie, J.; He, Y.; et al. MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy. Mater. Sol. Cells. 2020, 206, 110229.

125. Luo, Y.; Xie, Y.; Jiang, H.; et al. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.

126. Liu, Y.; Tang, Z.; Huang, Z.; et al. Flexible phase change composites based on hierarchically porous polypyrrole scaffold for broad-band solar absorption and efficient solar-thermal-electric energy conversion. Compos. Sci. Technol. 2024, 250, 110519.

127. Cheng, P.; Gao, H.; Chen, X.; et al. Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem. Eng. J. 2020, 397, 125330.

128. Chen, X.; Gao, H.; Hai, G.; et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy. Storage. Mater. 2020, 26, 129-37.

129. Zhao, X.; Lei, K.; Wang, S.; Wang, B.; Huang, L.; Zou, D. A shape-memory, room-temperature flexible phase change material based on PA/TPEE/EG for battery thermal management. Chem. Eng. J. 2023, 463, 142514.

130. Wu, W.; Wu, W.; Wang, S. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy. 2019, 236, 10-21.

131. Wu, T.; Hu, Y.; Rong, H.; Wang, C. SEBS-based composite phase change material with thermal shape memory for thermal management applications. Energy 2021, 221, 119900.

132. Wu, S.; Li, T.; Wu, M.; et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A. 2020, 8, 20011-20.

133. Wu, M.; Li, T.; Wang, P.; Wu, S.; Wang, R.; Lin, J. Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small 2022, 18, e2105647.

134. Huang, Y.; Luo, W.; Chen, W.; et al. Self-healing, adaptive and shape memory polymer-based thermal interface phase change materials via boron ester cross-linking. Chem. Eng. J. 2024, 496, 153789.

135. Zhang, S.; Cheng, B.; Jia, Z.; et al. The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1658-98.

136. Xu, W.; Yang, W.; Su, J.; et al. Diatom-based biomass composites phase change materials with high thermal conductivity for battery thermal management. J. Energy. Storage. 2024, 96, 112737.

137. Wang, C.; Liu, Q.; Song, H.; Jiang, Q. Vacuum filtration method towards flexible thermoelectric films. Soft. Sci. 2023, 3, 34.

138. Hong, M.; Sun, S.; Lyu, W.; et al. Advances in printing techniques for thermoelectric materials and devices. Soft. Sci. 2023, 3, 29.

139. Shen, L.; Liu, M.; Liu, P.; et al. A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower without degenerated conductivity. Soft. Sci. 2023, 3, 20.

140. Li, X.; Sheng, X.; Fang, Y.; et al. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Materials. 2023, 33, 2212776.

141. Gong, S.; Sheng, X.; Li, X.; et al. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick–Mortar” sandwich structure. Adv. Funct. Materials. 2022, 32, 2200570.

142. Yang, Z.; Ma, Y.; Jia, S.; et al. 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing. ACS. Appl. Mater. Interfaces. 2022, 14, 7283-91.

143. Ge, X.; Tay, G.; Hou, Y.; et al. Flexible and leakage-proof phase change composite for microwave attenuation and thermal management. Carbon 2023, 210, 118084.

144. Li, X.; Sheng, M.; Gong, S.; et al. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 2022, 430, 132928.

145. Liang, Y.; Tong, Y.; Tao, Z.; Guo, Q.; Hao, B.; Liu, Z. Multifunctional shape-stabilized phase change materials with enhanced thermal conductivity and electromagnetic interference shielding effectiveness for electronic devices. Macro. Mater. Eng. 2021, 306, 2100055.

146. Hu, B.; Guo, H.; Li, J.; et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding. Compos. Part. B. Eng. 2023, 266, 110998.

147. Guo, H.; Hu, B.; Shan, H.; Li, Z.; Qi, W.; Li, B. Magnetically assembled flexible phase change composites with vertically aligned structures for thermal management and electromagnetic interference shielding. Chem. Eng. J. 2024, 495, 153361.

148. Xiao, Y.; He, Y.; Wang, R.; et al. Mussel-inspired strategy to construct 3D silver nanoparticle network in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Compos. Part. B. Eng. 2022, 239, 109962.

149. Liang, C.; Zhang, W.; Liu, C.; et al. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/