REFERENCES
1. Nguyen, A. T.; Tjulkins, F.; Aasmundtveit, K. E.; Hoivik, N.; Hoff, L.; Imenes, K. Miniaturization of package for an implantable heart monitoring device. Microsyst. Technol. 2015, 21, 1813-26.
2. Sun, B.; Huang, X. Seeking advanced thermal management for stretchable electronics. npj. Flex. Electron. 2021, 5, 109.
3. Linh, V. T. N.; Han, S.; Koh, E.; Kim, S.; Jung, H. S.; Koo, J. Advances in wearable electronics for monitoring human organs: bridging external and internal health assessments. Biomaterials 2025, 314, 122865.
4. Dong, B.; Shi, Q.; Yang, Y.; Wen, F.; Zhang, Z.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano. Energy. 2021, 79, 105414.
5. Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7, 25.
6. Ahn, J.; Cho, S.; Wu, L.; et al. Innovations in self-powered sensors utilizing light, thermal, and mechanical renewable energy. Nano. Energy. 2024, 129, 110045.
7. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renew. Sustain. Energy. Rev. 2016, 65, 698-726.
8. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of thermoelectric generators: technologies and common applications. Energy. Reports. 2020, 6, 264-87.
9. Wu, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric converter: strategies from materials to device application. Nano. Energy. 2022, 91, 106692.
11. Riffat, S.; Ma, X. Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913-35.
12. Wang, Y.; Zhu, W.; Deng, Y.; et al. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer. J. Mater. Sci. Technol. 2022, 103, 1-7.
13. Jia, Y.; Zhang, S.; Li, J.; et al. Wearable device with high thermoelectric performance and long-lasting usability based on gel-thermocells for body heat harvesting. Small 2024, 20, e2401427.
14. Liu, Z.; Tian, B.; Zhang, B.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 2021, 7, 42.
15. Paganelli, A. I.; Mondéjar, A. G.; da, S. A. C.; et al. Real-time data analysis in health monitoring systems: a comprehensive systematic literature review. J. Biomed. Inform. 2022, 127, 104009.
16. Kim Tuoi T, Van Toan N, Ono T. Thermal energy harvester using ambient temperature fluctuations for self-powered wireless IoT sensing systems: a review. Nano. Energy. 2024, 121, 109186.
17. Chen, P.; Wang, J.; Xue, Y.; et al. From challenge to opportunity: revolutionizing the monitoring of emerging contaminants in water with advanced sensors. Water. Res. 2024, 265, 122297.
18. Zhang, J.; Huang, L.; Chen, M.; et al. Highly sensitive self-powered biosensor for real-time monitoring and early warning of human health and motion state. Nano. Energy. 2024, 131, 110213.
19. Smith, A. A.; Li, R.; Tse, Z. T. H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998.
20. Erdem, A.; Eksin, E.; Senturk, H.; Yildiz, E.; Maral, M. Recent developments in wearable biosensors for healthcare and biomedical applications. TrAC. Trends. Anal. Chem. 2024, 171, 117510.
21. Kulkarni, M. B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B. W. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024, 272, 125817.
22. Assaad, R. H.; Mohammadi, M.; Poudel, O. Developing an intelligent IoT-enabled wearable multimodal biosensing device and cloud-based digital dashboard for real-time and comprehensive health, physiological, emotional, and cognitive monitoring using multi-sensor fusion technologies. Sens. Actuators. A. Phys. 2025, 381, 116074.
23. Wang, J.; Zhu, Y.; Wu, Z.; et al. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. Microsyst. Nanoeng. 2022, 8, 16.
24. Xue, Z.; Gai, Y.; Wu, Y.; liu, Z.; Li, Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun. Mater. 2024, 5, 658.
25. Ding, Z.; Du, C.; Long, W.; et al. Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 2023, 68, 3261-77.
26. Lv, L.; Cao, C.; Qu, Y.; et al. Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 2022, 150, 100690.
27. Yu, H.; Hu, Z.; He, J.; et al. Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films. Nat. Commun. 2024, 15, 2521.
28. Li, J.; Liu, Y.; Wang, Z.; Chen, L.; Cai, K. Ultra-flexible self-supporting Ag2Se/nylon composite films for wearable thermoelectric devices. Compos. Part. B. Eng. 2023, 265, 110946.
29. Wu, H.; Shi, X.; Duan, J.; Liu, Q.; Chen, Z. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy. Environ. Sci. 2023, 16, 1870-906.
30. Liu, Y.; Zhang, Q.; Huang, A.; et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation. Nat. Commun. 2024, 15, 2141.
31. Liu, M.; Zhang, X.; Zhang, S.; Pei, Y. Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics. Nat. Commun. 2024, 15, 6580.
32. Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356.
33. Wang, X.; Wang, H.; Liu, B. Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 2018, 10, 1196.
34. Li, D.; Gong, Y.; Chen, Y.; et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro. Lett. 2020, 12, 36.
35. Qian, W.; Jia, S.; Yu, P.; et al. Highly stretchable, low-hysteresis, and antifreeze hydrogel for low-grade thermal energy harvesting in ionic thermoelectric supercapacitors. Mater. Today. Phys. 2024, 49, 101589.
36. Chen, L.; Rong, X.; Liu, Z.; et al. Negative thermopower anisotropic ionic thermoelectric hydrogels based on synergistic coordination and hydration for low-grade heat harvesting. Chem. Eng. J. 2024, 481, 148797.
37. Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future. Constr. Build. Mater. 2019, 228, 116818.
38. Beretta, D.; Neophytou, N.; Hodges, J. M.; et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R. Rep. 2019, 138, 100501.
39. d’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric materials and applications: a review. Energies 2023, 16, 6409.
40. Zhang, Q.; Deng, K.; Wilkens, L.; Reith, H.; Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 2022, 5, 333-47.
42. Duan, J.; Yu, B.; Huang, L.; et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 2021, 5, 768-79.
43. Zhang, Q.; Song, Q.; Wang, X.; et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy. Environ. Sci. 2018, 11, 933-40.
44. Ma, Z.; Wei, J.; Song, P.; et al. Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci. Semicond. Process. 2021, 121, 105303.
45. Sun, Y.; Zhu, Y.; Wu, H.; et al. Rational design from materials to devices enables an efficiency of 10.5% based on thermoelectric (Bi, Sb)2Te3 and Mg3(Bi, Sb)2 for power generation†. Energy. Environ. Sci. 2024, 17, 738-47.
46. Lyu, W.; Liu, W.; Li, M.; et al. Efficient stepwise carrier concentration optimization in Ge(1+x)-ySbyTe†. J. Mater. Chem. C. 2024, 12, 18004-8.
47. Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B. 1993, 47, 16631-4.
48. Oxandale, S. W.; Reinke, C.; Das, S. R.; El-kady, I. Enhanced thermoelectric performance via quantum confinement in a metal oxide semiconductor field effect transistor for thermal management. Commun. Mater. 2023, 4, 397.
49. Ma, J.; Delaire, O.; May, A. F.; et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nanotechnol. 2013, 8, 445-51.
50. Liu, F.; Zhang, M.; Nan, P.; et al. Unraveling the origin of donor - like effect in bismuth -telluride-based thermoelectric materials. Small. Science. 2023, Epub ahead of print.
51. Mathew, S. S.; Sangeeta; Kumar, R.; Singh, M.; Kashyap, M. K. Optimizing carrier concentration for enhanced thermoelectric performance in AgSbS2 monolayer. Ionics 2024, 30, 8647-57.
52. Musah, J.; Ilyas, A.; Novitskii, A.; et al. Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material. J. Alloys. Compd. 2021, 857, 157559.
53. Shalini, M.; Nanthini, S.; Veluswamy, P.; et al. Facet dependent ultralow thermal conductivity of zinc oxide coated silver fabric for thermoelectric devices. Sci. Rep. 2024, 14, 27210.
54. Qi, X.; Kang, T.; Yang, L.; et al. Simultaneous suppression of phonon transport and carrier concentration for efficient rhombohedral GeTe thermoelectric. Adv. Sci. 2024, 11, e2407413.
55. Gong, Y.; Dou, W.; Lu, B.; et al. Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals. Nat. Commun. 2024, 15, 4231.
56. Jia, B.; Wu, D.; Xie, L.; et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024, 384, 81-6.
57. Wang, X.; Huang, Y. T.; Liu, C.; et al. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 2019, 10, 4151.
58. Dong, S.; Cabral, D. M.; Pringle, J. M.; Macfarlane, D. R. Exploring the electrochemical properties of mixed ligand Fe(II) complexes as redox couples. Electrochim. Acta. 2020, 362, 137109.
59. Han, C. G.; Qian, X.; Li, Q.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091-8.
60. Li, Z.; Xu, Y.; Wu, L.; et al. Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 2022, 13, 132.
61. Liu, Y.; Cui, M.; Ling, W.; et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy. Environ. Sci. 2022, 15, 3670-87.
62. Qian, X.; Ma, Z.; Huang, Q.; Jiang, H.; Yang, R. Thermodynamics of ionic thermoelectrics for low-grade heat harvesting. ACS. Energy. Lett. 2024, 9, 679-706.
63. Duan, J.; Feng, G.; Yu, B.; et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 2018, 9, 5146.
64. Wang, Z.; Li, N.; Yang, X.; Zhang, Z.; Zhang, H.; Cui, X. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst. Nanoeng. 2024, 10, 55.
65. Yang, K.; Bai, C.; Liu, B.; Liu, Z.; Cui, X. Self-powered, non-toxic, recyclable thermogalvanic hydrogel sensor for temperature monitoring of edibles. Micromachines 2023, 14, 1327.
66. Li, T.; Zhang, X.; Lacey, S. D.; et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608-13.
67. Zhao, D.; Martinelli, A.; Willfahrt, A.; et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 2019, 10, 1093.
68. He, Y.; Li, S.; Chen, R.; et al. Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nanomicro. Lett. 2023, 15, 101.
69. Kjelstrup, S.; Kristiansen, K. R.; Gunnarshaug, A. F.; Bedeaux, D. Seebeck, Peltier, and Soret effects: on different formalisms for transport equations in thermogalvanic cells. J. Chem. Phys. 2023, 158, 020901.
70. Cheng, H.; Ouyang, J. Soret effect of ionic liquid gels for thermoelectric conversion. J. Phys. Chem. Lett. 2022, 13, 10830-42.
71. Rahman, M.; Saghir, M. Thermodiffusion or Soret effect: historical review. Int. J. Heat. Mass. Transf. 2014, 73, 693-705.
72. Zhao, D.; Würger, A.; Crispin, X. Ionic thermoelectric materials and devices. J. Energy. Chem. 2021, 61, 88-103.
73. Song, D.; Chi, C.; An, M.; et al. Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials. Cell. Rep. Phys. Sci. 2022, 3, 101018.
74. Kim, D. H.; Akbar, Z. A.; Malik, Y. T.; Jeon, J. W.; Jang, S. Y. Self-healable polymer complex with a giant ionic thermoelectric effect. Nat. Commun. 2023, 14, 3246.
75. Tian, Y.; Yang, X.; Li, K.; et al. High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric devices. Mater. Today. Energy. 2023, 36, 101342.
76. Wu, M.; Yao, K.; Li, D.; et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater. Today. Energy. 2021, 21, 100786.
77. Yuan, F.; Wang, W.; Liu, S.; et al. A self-powered three-dimensional integrated e-skin for multiple stimuli recognition. Chem. Eng. J. 2023, 451, 138522.
78. Chugh, V.; Basu, A.; Kaushik, A.; Basu, A. K. E-skin - based advanced wearable technology for health management. Curr. Res. Biotechnol. 2023, 5, 100129.
79. Chen, J.; Chen, X.; Li, H.; Ma, C.; Yu, P.; Zhang, Y. A large-area less-wires stretchable robot electronic skin. Sens. Actuators. A. Phys. 2024, 376, 115618.
80. Núñez C, Manjakkal L, Dahiya R. Energy autonomous electronic skin. npj. Flex. Electron. 2019, 3, 45.
81. Yin, L.; Kim, K. N.; Lv, J.; et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 2021, 12, 1542.
82. Sun, X.; Guo, X.; Gao, J.; et al. E-Skin and its advanced applications in ubiquitous health monitoring. Biomedicines 2024, 12, 2307.
83. Jabri, M.; Masoumi, S.; Kandukuri, T. R.; Occhipinti, L. G. Flexible thin-film thermoelectric generators for human skin-heat harvesting: a numerical study. Nano. Energy. 2024, 129, 110001.
84. Yuan, J.; Zhu, R.; Li, G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv. Mater. Technol. 2020, 5, 2000419.
85. Ma, H.; Pu, S.; Wu, H.; et al. Flexible Ag2Se thermoelectric films enable the multifunctional thermal perception in electronic skins. ACS. Appl. Mater. Interfaces. 2024, 16, 7453-62.
86. Han, Y.; Wei, H.; Du, Y.; et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv. Sci. 2023, 10, e2302685.
87. Kang, M.; Qu, R.; Sun, X.; et al. Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-thermoelectric generator for distributed mini-region sensing. Adv. Mater. 2023, 35, e2309629.
88. Guo, X.; Lu, X.; Jiang, P.; Bao, X. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv. Mater. 2024, 36, e2313911.
89. Du, C.; Cao, M.; Li, G.; et al. Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 2022, 32, 2206083.
90. Li, N.; Wang, Z.; Yang, X.; et al. Deep-learning-assisted thermogalvanic hydrogel E-skin for self-powered signature recognition and biometric authentication. Adv. Funct. Mater. 2024, 34, 2314419.
91. Ma, X.; Wang, W.; Cui, X.; et al. Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for intelligent security. Small 2024, 20, e2402700.
92. Tian, C.; Khan, S. A.; Zhang, Z.; Cui, X.; Zhang, H. Thermoelectric hydrogel electronic skin for passive multimodal physiological perception. ACS. Sens. 2024, 9, 840-8.
93. Li, Z.; Yin, F.; He, W.; et al. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as flexible sensors for human motion monitoring. Int. J. Biol. Macromol. 2023, 230, 123117.
94. Zhang, X.; Zhao, L. Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics. 2015, 1, 92-105.
95. Nozariasbmarz, A.; Collins, H.; Dsouza, K.; et al. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy. 2020, 258, 114069.
96. Yang, S.; Li, Y.; Deng, L.; et al. Flexible thermoelectric generator and energy management electronics powered by body heat. Microsyst. Nanoeng. 2023, 9, 106.
97. Jin, J.; Hou, Y.; Li, C.; et al. High-performance waterproof flexible thermoelectric generators for self-powered electronics. Nano. Energy. 2024, 132, 110388.
98. He, X.; Gu, J.; Hao, Y.; et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 2022, 450, 137937.
99. Wang, Z.; Lv, H.; Gao, Z.; Song, H. Stretchable and thermo-mechanical stable ionogels with high thermoelectric properties for respiratory sensing and energy harvesting. Chem. Eng. J. 2024, 498, 155789.
100. He, X.; Li, C.; Zhu, S.; et al. Layer-by-layer self-assembly of durable, breathable and enhanced performance thermoelectric fabrics for collaborative monitoring of human signal. Chem. Eng. J. 2024, 490, 151470.
101. He, X.; Li, B.; Cai, J.; et al. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity. SusMat 2023, 3, 709-20.
102. Zhang, Y.; Wang, H.; Ahmed, K. S.; et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring. J. Colloid. Interface. Sci. 2025, 678, 143-9.
103. Dong, B.; Prakash, V.; Feng, F.; O'neill, Z. A review of smart building sensing system for better indoor environment control. Energy. Build. 2019, 199, 29-46.
104. Narayana, T. L.; Venkatesh, C.; Kiran, A.; et al. Advances in real time smart monitoring of environmental parameters using IoT and sensors. Heliyon 2024, 10, e28195.
105. Wang, J.; Song, Y.; Yu, F.; et al. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8. Nat. Commun. 2024, 15, 6704.
106. Li, X.; Xiao, X.; Bai, C.; et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J. Mater. Chem. C. 2022, 10, 13789-96.
107. He, H.; Qin, Y.; Liu, J.; et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 2023, 460, 141661.
108. Li, G.; Hu, Y.; Chen, J.; et al. Thermoelectric and photoelectric dual modulated sensors for human internet of things application in accurate fire recognition and warning. Adv. Funct. Mater. 2023, 33, 2303861.
109. Jiang, C.; Lai, X.; Wu, Z.; et al. A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A. 2022, 10, 21368-78.
110. Tsao, Y.; Husain, R. A.; Lin, Y.; Khan, I.; Chen, S.; Lin, Z. A self-powered mercury ion nanosensor based on the thermoelectric effect and chemical transformation mechanism. Nano. Energy. 2019, 62, 268-74.
111. Jia, S.; Ma, H.; Gao, S.; Yang, L.; Sun, Q. Thermoelectric materials and devices for advanced biomedical applications. Small 2024, 20, e2405019.
112. Wang, J.; Xiong, Z.; Wu, L.; Chen, J.; Zhu, Y. Highly sensitive and wide-range iontronic pressure sensors with a wheat awn-like hierarchical structure. J. Colloid. Interface. Sci. 2024, 669, 190-7.
113. Wu, B.; Wei, W.; Guo, Y.; et al. Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chem. Eng. J. 2023, 453, 139749.