REFERENCES

1. Zheng Y, Wang Z, Chen P, Peng H. Semiconductor fibers for textile integrated electronic systems. Natl Sci Rev 2024;11:nwae143.

2. Park J, Jeong Y, Kim J, Gu J, Wang J, Park I. Biopsy needle integrated with multi-modal physical/chemical sensor array. Biosens Bioelectron 2020;148:111822.

3. Yu D, Qian Q, Wei L, et al. Emergence of fiber supercapacitors. Chem Soc Rev 2015;44:647-62.

4. Khan AQ, Shafiq M, Li J, et al. Recent developments in artificial spider silk and functional gel fibers. SmartMat 2023;4:e1189.

5. Cai J, Du M, Li Z. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol 2022;7:2101182.

6. Wu Y, Dong S, Li X, et al. A stretchable all-nanofiber iontronic pressure sensor. Soft Sci 2023;3:33.

7. Li X, Zhang S, Li K, et al. Electrospun micro/nanofiber-based biomechanical sensors. ACS Appl Polym Mater 2023;5:6720-46.

8. Cui X, Wu H, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A 2022;10:15881-905.

9. Zhong Y, Liang Q, Chen Z, et al. High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography. Chem Mater 2023;35:9739-46.

10. Wu F, Lan B, Cheng Y, et al. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano Energy 2022;101:107588.

11. Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159-71.

12. Pu Z, Tu J, Han R, et al. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab Chip 2018;18:3570-7.

13. Jordan CD, Thorne BRH, Wadhwa A, et al. Wireless resonant circuits printed using aerosol jet deposition for MRI catheter tracking. IEEE Trans Biomed Eng 2020;67:876-82.

14. Peng Z, Wang M, Lv H, et al. Electric field-driven microscale 3D printing of flexible thin-walled tubular mesh structures of molten polymers. Materi Design 2023;225:111433.

15. Zhang C, Zhang L, Pu Z, Bao B, Ouyang W, Li D. Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing technology for wearable applications. Nano Energy 2023;113:108574.

16. Jose M, Bezerra Alexandre E, Neumaier L, et al. Future thread: printing electronics on fibers. ACS Appl Mater Interfaces 2024;16:7996-8005.

17. Horiuchi T, Suzuki Y. Fabrication of fine and high-density multithread spirals on inner surfaces of small-diameter pipes using laser scan lithography. Jpn J Appl Phys 2014;53:06JM10.

18. Hwang S, Kang M, Lee A, et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat Commun 2022;13:3173.

19. Tamaki S, Matsunaga T, Kuki T, Mushiake H, Furusawa Y, Haga Y. Neural probe with multiple optical stimulation in depth direction. Electron Commun Jpn 2017;100:45-54.

20. Ham S, Kang M, Jang S, et al. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci Adv 2020;6:eaba1178.

21. Fabiano S, Facchetti A. Stretchable helix-structured fibre electronics. Nat Electron 2021;4:864-5.

22. Wang Q, Han W, Wang Y, Lu M, Dong L. Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst Nanoeng 2018;4:31.

23. Ye C, Zhao L, Yang S, Li X. Recent research on preparation and application of smart joule heating fabrics. Small 2024;20:e2309027.

24. Park J, Seo B, Jeong Y, Park I. A review of recent advancements in sensor-integrated medical tools. Adv Sci 2024;11:e2307427.

25. Paulk AC, Kfir Y, Khanna AR, et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat Neurosci 2022;25:252-63.

26. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci 2022;2:22.

27. Wang P, Li X, Sun G, et al. Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv Fiber Mater 2024.

28. Sun X, Zhang F, Zhang L, et al. Enhanced electromechanical conversion via in situ grown CsPbBr3 nanoparticles/poly(vinylidene fluoride) fibers for physiological signal monitoring. Soft Sci 2022;2:1.

29. Zhang C, Ouyang W, Zhang L, Li D. A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications. Microsyst Nanoeng 2023;9:158.

30. Zhang M, Su H, Zhang C, Sun Z, Jiang Z. Smart optical fiber fabric based on side-emitting and side-coupling for pulse and blood oxygen measurement. Text Res J 2023;93:3382-92.

31. Tian S, Wang Y, Deng H, Wang Y, Zhang X. Flexible pressure and temperature sensors towards e-skin: material, mechanism, structure and fabrication. Soft Sci 2023;3:30.

32. Liu Y, Jia H, Sun H, et al. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat Neurosci 2024;27:1620-31.

33. Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019;15:148-60.

34. Nazempour R, Zhang B, Ye Z, Yin L, Lv X, Sheng X. Emerging applications of optical fiber-based devices for brain research. Adv Fiber Mater 2022;4:24-42.

35. Sellers KK, Chung JE, Zhou J, et al. Thin-film microfabrication and intraoperative testing of µECoG and iEEG depth arrays for sense and stimulation. J Neural Eng 2021;18:045014.

36. Huang S, He M, Yao C, et al. Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for theranostic endoscopic surgery. Adv Funct Mater 2023;33:2214485.

37. Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci 2019;20:330-45.

38. Wang Z, Wu T, Wang Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun 2020;11:3842.

39. Uzun D, Yildirim DK, Bruce CG, et al. Interventional device tracking under MRI via alternating current controlled inhomogeneities. Magn Reson Med 2024;92:346-60.

40. Yang Z, Shi J, Sun B, Yao J, Ding G, Sawada R. Fabrication of electromagnetically-driven tilted microcoil on polyimide capillary surface for potential single-fiber endoscope scanner application. Micromachines 2018;9:61.

41. Huang F, Hu J, Yan X, Meng F. High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves. J Ind Text 2022;51:4554S-70S.

42. Kara G, Bolat S, Sharma K, et al. Conformal integration of an inkjet-printed PbS QDs-graphene IR photodetector on a polymer optical fiber. Adv Mater Technol 2023;8:2201922.

43. Kwon S, Hwang YH, Nam M, et al. Recent progress of fiber shaped lighting devices for smart display applications - a fibertronic perspective. Adv Mater 2020;32:e1903488.

44. Lee K, Paulk AC, Ro YG, et al. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat Commun 2024;15:218.

45. Bilgin MB, Tiryaki ME, Lazovic J, Sitti M. Radio frequency sensing-based in situ temperature measurements during magnetic resonance imaging interventional procedures. Adv Mater Technol 2022;7:2101625.

46. Yun J, Kim HW, Kim H, Lee J. Electrical impedance spectroscopy on a needle for safer Veress needle insertion during laparoscopic surgery. Sensor Actuat B Chem 2017;250:453-60.

47. Baysoy E, Yildirim DK, Ozsoy C, Mutlu S, Kocaturk O. Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices. MAGMA 2017;30:93-101.

48. Gerbella M, Borra E, Pothof F, et al. Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey. J Neural Eng 2021;18:024001.

49. Fiáth R, Hofer KT, Csikós V, et al. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomed Tech 2018;63:301-15.

50. Hayat S, Basir A, Yoo H. Modeling and in vitro measurement of a compact antenna for intravascular catheter tracking and imaging system. IEEE Trans Instrum Meas 2023;72:1-14.

51. Yun J, Kim HW, Lee JH. Improvement of depth profiling into biotissues using micro electrical impedance spectroscopy on a needle with selective passivation. Sensors 2016;16:2207.

52. Ganesana M, Trikantzopoulos E, Maniar Y, Lee ST, Venton BJ. Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain. Biosens Bioelectron 2019;130:103-9.

53. Zhang R, Wang X, Cai S, Tao K, Xu Y. A solid-state wire-shaped supercapacitor based on nylon/Ag/polypyrrole and nylon/Ag/MnO2 electrodes. Polymers 2023;15:1627.

54. Zhao Y, Lin Z, Dong S, Chen M. Review of wearable optical fiber sensors: drawing a blueprint for human health monitoring. Opt Laser Technol 2023;161:109227.

55. Dong Y, Tian Y, Yang Y, et al. Multiple covalent modification enables nylon fiber biosensor with robust scrub-resistant and signal-capture ability for multiscenario health monitoring and security warning. Int J Biol Macromol 2024;281:136518.

56. Wang Z, Xing D, Yin R, et al. Breathable and waterproof conductive cotton fabric pressure sensor with distinguished electrothermal and electromagnetic interference shielding performances. Appl Mater Today 2024;38:102256.

57. Wang S, Xu Q, Sun H. Functionalization of fiber devices: materials, preparations and applications. Adv Fiber Mater 2022;4:324-41.

58. Sheng F, Zhao C, Zhang B, Tan Y, Dong K. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare. Soft Sci 2024;4:2.

59. Liu T, He Z, Liu H, et al. Heat-resistant and high-performance solid-state supercapacitors based on poly(para-phenylene terephthalamide) fibers via polymer-assisted metal deposition. ACS Appl Mater Interfaces 2021;13:18100-9.

60. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater 2016;28:722-8.

61. Yang Z, Deng J, Chen X, Ren J, Peng H. A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl 2013;52:13453-7.

62. Wang Y, Ding Y, Guo X, Yu G. Conductive polymers for stretchable supercapacitors. Nano Res 2019;12:1978-87.

63. Xu W, Luo J, Zhang W, et al. Flexible airflow-strain dual response sensor with high sensitivity based on polyurethane conductive fiber flocked carbon fibers. J Mater Sci Mater Electron 2024;35:13443.

64. Li P, Liu J, Wang S, et al. Highly stretchable electromechanical sensors with ionotronic knots based on hydrogel fibers. Adv Mater Technol 2024;9:2302202.

65. Ding H, Wu Z, Wang H, et al. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater Horiz 2022;9:1935-46.

66. Niu Q, Huang L, Fan S, Yao X, Zhang Y. 3D printing silk fibroin/polyacrylamide triple-network composite hydrogels with stretchability, conductivity, and strain-sensing ability as bionic electronic skins. ACS Biomater Sci Eng 2024;10:3489-99.

67. Yin Z, Jian M, Wang C, et al. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett 2018;18:7085-91.

68. Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2020;5:61-81.

69. Kwon CH, Ko Y, Shin D, et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat Commun 2018;9:4479.

70. Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev 2023;123:613-62.

71. Xiao R, Yu G, Xu BB, Wang N, Liu X. Fiber surface/interfacial engineering on wearable electronics. Small 2021;17:e2102903.

72. Li WJ, Mai JD, Ho C. Sensors and actuators on non-planar substrates. Sensor Actuat A Phys 1999;73:80-8.

73. Goto S, Matsunaga T, Chen JJ, Makishi W, Esashi M, Haga Y.

74. de Miranda R, Zamponi C, Quandt E. Rotational UV lithography device for cylindrical substrate exposure. Rev Sci Instrum 2009;80:015103.

75. Joshima Y, Kokubo T, Horiuchi T. Application of laser scan lithography to fabrication of microcylindrical parts. Jpn J Appl Phys 2004;43:4031.

76. Horiuchi T, Suzuki Y. Micro-fabrication of air-bearing grooves onto inner surfaces of fine copper pipes. Microelect Eng 2013;110:422-6.

77. Horiuchi T, Sasaki R. New laser-scan exposure system for delineating precise helical patterns onto sub-50-µm wires. Jpn J Appl Phys 2012;51:06FL01.

78. Horiuchi T, Fujii H, Yasunaga K. Lithography onto surfaces of fine-diameter pipes using rotary scan-projection exposure. J Photopol Sci Technol 2015;28:273-8.

79. Doll PW, Doll C, Käßer L, et al. Rotational UV-lithography using flexible chromium-coated polymer masks for the fabrication of microstructured dental implant surfaces: a proof of concept. J Micromech Microeng 2020;30:045008.

80. Park J, Fujita H, Kim B. Fabrication of metallic microstructure on curved substrate by optical soft lithography and copper electroplating. Sensor Actuat A Phys 2011;168:105-11.

81. Yang Z, Zhang Y, Itoh T, Maeda R. New fabrication method of three-electrode system on cylindrical capillary surface as a flexible implantable microneedle. Surf Rev Lett 2013;20:1350027.

82. Haga Y, Muyari Y, Goto S, Matsunaga T, Esashi M. Development of minimally invasive medical tools using laser processing on cylindrical substrates. Electr Eng Jpn 2011;176:65-74.

83. Liao M, Wang C, Hong Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat Nanotechnol 2022;17:372-7.

84. Xie Y, Lu L, Tang Y, et al. Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor electrodes. Mater Lett 2017;186:70-3.

85. Yildirim DK, Bruce C, Uzun D, et al. A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T. Magn Reson Med 2021;86:1786-801.

86. Zulkifli NA, Jeong W, Kim M, et al. 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation. Soft Sci 2024;4:20.

87. Zeng Y, Chen G, Zhao F, et al. 3D printing of high-temperature thick film platinum resistance temperature detector array. Addit Manuf 2023;73:103654.

88. Chen G, Zeng Y, Zhao F, et al. Conformal fabrication of functional polymer-derived ceramics thin films. Surf Coat Technol 2023;464:129536.

89. Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022;13:2101.

90. Zhang G, Lan H, Qian L, Zhao J, Wang F. A microscale 3D printing based on the electric-field-driven jet. 3D Print Addit Manuf 2020;7:37-44.

91. Hobbie HA, Doherty JL, Smith BN, Maccarini P, Franklin AD. Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing. Npj Flex Electron 2024;8:54.

92. Wang K, Wang X, Wang C, et al. Customizable and scalable manufacture of aesthetic ionic conductive silk yarns for e-textile devices. Chem Eng J 2024;487:150645.

93. Fu L, Liu Y, Liu Z, et al. Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors. Adv Mater 2006;18:181-5.

94. Carey T, Maughan J, Doolan L, et al. Knot architecture for biocompatible and semiconducting 2D electronic fiber transistors. Small Methods 2024;8:e2301654.

95. Lee GH, Lee DH, Jeon W, et al. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat Commun 2023;14:4173.

96. Woo S, Kim H, Kim J, Ryu H, Lee J. Fiber-based flexible ionic diode with high robustness and rectifying performance: toward electronic textile circuits. Adv Elect Mater 2024;10:2300653.

97. Liao M, Wang J, Ye L, et al. A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J Mater Chem A 2021;9:6811-8.

98. Han J, Xu C, Zhang J, et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 2021;15:1597-607.

99. Cheung CL, Wu M, Fang G, et al. Omnidirectional monolithic marker for intra-operative MR-based positional sensing in closed MRI. IEEE Trans Med Imaging 2024;43:439-48.

100. Wasylczyk P, Ozimek F, Tiwari MK, Cruz Ld, Bergeles C.

101. Yang Z, Zhang Y, Itoh T, Maeda R. A novel MEMS compatible lab-on-a-tube technology. Lab Chip 2014;14:4604-8.

102. Detert M, Friesecke S, Deckert M, Rose G, Schmidt B, Kaiser M. Using the hot embossing technology for the realization of microtechnical structures in medical imaging. Biomed Tech 2012;57:599-602.

103. Pothof F, Galchev T, Patel M, Herbawi AS, Paul O, Ruther P.

104. Pothof F, Anees S, Leupold J, et al.

105. Schwaerzle M, Pothof F, Paul O, Ruther P. High-resolution optrode with integrated light source for deeper brain regions. Procedia Eng 2015;120:924-7.

106. Mekaru H, Takagi H, Ohtomo A, Kokubo M, Goto H. Soft patterning on cylindrical surface of plastic optical fiber. J Vac Sci Technol B 2011;29:06FC07.

107. Mekaru H, Ohtomo A, Takagi H, Kokubo M, Goto H. High-speed imprinting on plastic optical fibers using cylindrical mold with hybrid microstructures. Microelect Eng 2013;110:156-62.

108. Ding Y, Jiang J, Wu Y, et al. Porous conductive textiles for wearable electronics. Chem Rev 2024;124:1535-648.

109. Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. Appl Phys Rev 2023;10:031303.

110. Zhou S, Li J, Zhang Q, et al. Recent advance on fiber optic SPR/LSPR-based ultra-sensitive biosensors using novel structures and emerging signal amplification strategies. Opt Laser Technol 2024;175:110783.

111. Guo J, Zhou B, Yang C, Dai Q, Kong L. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv Funct Mater 2019;29:1902898.

112. Abdelaziz MEMK, Zhao J, Gil Rosa B, et al. Fiberbots: robotic fibers for high-precision minimally invasive surgery. Sci Adv 2024;10:eadj1984.

113. Park J, Sempionatto JR, Kim J, et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces. ACS Sens 2020;5:1363-73.

114. Lin R, Jin Y, Li RR, et al. Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation. Biosens Bioelectron 2022;216:114651.

115. Liu Z, Yu X, Huang J, Wu X, Wang Z, Zhu B. A review: flexible devices for nerve stimulation. Soft Sci 2024;4:4.

116. Vazquez R, Motovilova E, Winkler SA. Stretchable sensor materials applicable to radiofrequency coil design in magnetic resonance imaging: a review. Sensors 2024;24:3390.

117. Yaras YS, Yildirim DK, Herzka DA, et al. Real-time device tracking under MRI using an acousto-optic active marker. Magn Reson Med 2021;85:2904-14.

118. Jin J, Wang S, Zhang Z, Mei D, Wang Y. Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions. Soft Sci 2023;3:8.

119. Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.

120. Kim J, Kim H, Lee M, et al. Progresses and perspectives of 1D soft sensing devices for healthcare applications. Adv Funct Mater 2024:34;2406651.

121. Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano ;2023:1355-71.

122. Zhu P, Li Z, Pang J, He P, Zhang S. Latest developments and trends in electronic skin devices. Soft Sci 2024;4:17.

123. Kim KH, Kim JH, Ko YJ, Lee HE. Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications. Soft Sci 2024;4:24.

124. Gao W, Huang J, He J, et al. Recent advances in ultrathin materials and their applications in e-skin. InfoMat 2023;5:e12426.

125. Hao Y, Yan Q, Liu H, et al. A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare. Adv Funct Mater 2023;33:2303881.

126. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.

127. Mi Q, Dong Y, Ge D, et al. Scalable manufacture of efficient, highly stable, and compact 3D imitation skin-based elastic triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2024;131:110283.

128. Ge D, Mi Q, Gong R, et al. Mass-producible 3D hair structure-editable silk-based electronic skin for multiscenario signal monitoring and emergency alarming system. Adv Funct Mater 2023;33:2305328.

129. Lai Y, Ye B, Lu C, et al. Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: a tactile-induced insulating-to-conducting transition. Adv Funct Mater 2016;26:1286-95.

130. Jiang L, Yuan L, Wang W, Zhang Q. Soft materials for wearable supercapacitors. Soft Sci 2021;1:5.

131. Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater 2014;26:2022-7.

132. Geng W, Cuthbert TJ, Menon C. Conductive thermoplastic elastomer composite capacitive strain sensors and their application in a wearable device for quantitative joint angle prediction. ACS Appl Polym Mater 2021;3:122-9.

133. Zhou J, Gu Y, Fei P, et al. Flexible piezotronic strain sensor. Nano Lett 2008;8:3035-40.

134. Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020;78:105389.

135. Dong L, Gang T, Bian C, Tong R, Wang J, Hu M. A high sensitivity optical fiber strain sensor based on hollow core tapering. Opt Fiber Technol 2020;56:102179.

136. Liu S, Zhang W, He J, Lu Y, Wu Q, Xing M. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives. Adv Fiber Mater 2024;6:36-67.

137. Li L, Xiang H, Xiong Y, et al. Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine. Adv Sci 2018;5:1800558.

138. Zhang J, Xu B, Chen K, Li Y, Li G, Liu Z. Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers. SusMat 2024;4:e207.

139. Wei X, Liang X, Meng C, Cao S, Shi Q, Wu J. Multimodal electronic textiles for intelligent human-machine interfaces. Soft Sci 2023;3:17.

140. Sheng F, Zhang B, Zhang Y, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano 2022;16:10958-67.

141. Ning C, Cheng R, Jiang Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 2022;16:2811-21.

142. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.

143. Frutiger A, Muth JT, Vogt DM, et al. Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 2015;27:2440-6.

144. Lee J, Ihle SJ, Pellegrino GS, et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat Electron 2021;4:291-301.

145. Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:24.

146. Lan L, Zhao F, Yao Y, Ping J, Ying Y. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor. ACS Appl Mater Interfaces 2020;12:10689-96.

147. Jiang X, Ren Z, Fu Y, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains. ACS Appl Mater Interfaces 2019;11:37051-9.

148. Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 2021;84:105954.

149. Chhetry A, Yoon H, Park JY. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J Mater Chem C 2017;5:10068-76.

150. Chen Y, Wang Z, Xu R, Wang W, Yu D. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating. Chem Eng J 2020;394:124960.

151. Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:eaay2840.

152. Wang Y, Zhu M, Wei X, Yu J, Li Z, Ding B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem Eng J 2021;425:130599.

153. Fan W, Liu T, Wu F, et al. An antisweat interference and highly sensitive temperature sensor based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 2023;17:21073-82.

154. Yun J. Recent progress in thermal management for flexible/wearable devices. Soft Sci 2023;3:12.

155. Wang W, Yao D, Wang H, et al. A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv Funct Mater 2024;34:2316339.

156. Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 2017;6:1601371.

157. Husain M, Kennon R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications. Fibers 2013;1:2-10.

158. Kumar SRS, Kurra N, Alshareef HN. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films. J Mater Chem C 2016;4:215-21.

159. Lee J, Kim DW, Chun S, et al. Intrinsically strain-insensitive, hyperelastic temperature-sensing fiber with compressed micro-wrinkles for integrated textronics. Adv Mater Technol 2020;5:2000073.

160. Li F, Xue H, Lin X, Zhao H, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl Mater Interfaces 2022;14:43844-52.

161. Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater 2018;7:e1800074.

162. Trung TQ, Dang TML, Ramasundaram S, Toi PT, Park SY, Lee NE. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl Mater Interfaces 2019;11:2317-27.

163. Afroj S, Karim N, Wang Z, et al. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 2019;13:3847-57.

164. Bubnova O, Khan ZU, Wang H, et al. Semi-metallic polymers. Nat Mater 2014;13:190-4.

165. Ryu WM, Lee Y, Son Y, Park G, Park S. Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv Fiber Mater 2023;5:1712-24.

166. Wang Z, Zhang L, Liu J, Li C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection. Nanoscale 2019;11:14242-9.

167. Zhao X, Wang LY, Tang CY, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 2020;14:8793-805.

168. Hu X, Quan B, Zhu C, et al. Upgrading electricity generation and electromagnetic interference shielding efficiency via phase-change feedback and simple origami strategy. Adv Sci 2023;10:e2206835.

169. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017;117:6225-331.

170. Cheng Y, Zhang H, Wang R, et al. Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl Mater Interfaces 2016;8:32925-33.

171. Li Y, Liu X, Wang S, et al. Dopamine-induced high fiber wetness for improved conductive fiber bundles with striated polypyrrole coating toward wearable healthcare electronics. Chem Eng J 2024;485:149888.

172. Villatoro E, Loyez M, Villatoro J, Caucheteur C, Albert J. Dual-mode comb plasmonic optical fiber sensing. ACS Sens 2024;9:3027-36.

173. Qian Y, Wang Q, Zhang D, Wang Y, Li B, Wang H. A high-performance long-range surface plasmon resonance sensor based on the co-modification of carbon nanotubes and gold nanorods. Opt Fiber Technol 2023;80:103460.

174. Viegas D, Goicoechea J, Santos JL, et al. Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating. Sensors 2009;9:519-27.

175. Fenjan DA, Mahdi BR, Yusr HA. Graphene oxide-coated mach-zehnder interferometer based ammonia gas sensor. Nexo Rev Cient 2024;36:1132-40.

176. Zhang S, Han B, Zhang Y, Liu Y, Zheng W, Zhao Y. Multichannel fiber optic SPR sensors: realization methods, application status, and future prospects. Laser Photonics Rev 2022;16:2200009.

177. Li Z, Xiao Y, Liu F, et al. Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light Sci Appl 2022;11:220.

178. Wang Q, Yin X, Yin P, et al. Research progress of resonance optical fiber sensors modified by low-dimensional materials. Laser Photonics Rev 2023;17:2200859.

179. Ning W, Hu S, Zhou C, et al. An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori. Anal Chim Acta 2023;1278:341733.

180. Pathak A, Gupta BD. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens Bioelectron 2019;133:205-14.

181. Gomez D, Morgan SP, Hayes-gill BR, Correia RG, Korposh S. Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment. Sensor Actuat B Chem 2018;254:887-95.

182. Jain S, Paliwal A, Gupta V, Tomar M. Smartphone integrated handheld long range surface plasmon resonance based fiber-optic biosensor with tunable SiO2 sensing matrix. Biosens Bioelectron 2022;201:113919.

183. Samavati Z, Samavati A, Ismail AF, Othman MHD, Rahman MA. Comprehensive investigation of evanescent wave optical fiber refractive index sensor coated with ZnO nanoparticles. Opt Fiber Technol 2019;52:101976.

184. Chauhan M, Singh VK. ZnO nanostructures coated no-core fiber refractive index sensor. Mat Sci Semicon Proc 2022;147:106757.

185. Yin Z, Jing X, Li K, Zhang Z, Li J. Modulation of the sensing bandwidth of dual-channel SPR sensors by TiO2 film. Opt Laser Technol 2024;169:110105.

186. Imas JJ, Albert J, Villar ID, Ozcariz A, Zamarreno CR, Matias IR. Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber bragg gratings. J Lightwave Technol 2022;40:6006-12.

187. Imas JJ, Matías IR, Del Villar I, Ozcáriz A, Zamarreño CR, Albert J. All-fiber ellipsometer for nanoscale dielectric coatings. Opto Electron Adv 2023;10:230048.

188. Sangeetha M, Madhan D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt Laser Technol 2020;127:106193.

189. Li X, Gong P, Zhou X, et al. In-situ detection scheme for EGFR gene with temperature and pH compensation using a triple-channel optical fiber biosensor. Anal Chim Acta 2023;1263:341286.

190. Wang Q, Wang X, Song H, Zhao W, Jing J. A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton. Opt Laser Technol 2020;124:106002.

191. Siyu E, Zhang Y, Han B, Zheng W, Wu Q, Zheng H. Two-channel surface plasmon resonance sensor for simultaneous measurement of seawater salinity and temperature. IEEE Trans Instrum Meas 2020;69:7191-9.

192. Zheng W, Han B, Zhang YN, Liu L, Zhao Y. An in-fiber sensor for simultaneous measurement of cholesterol concentration and temperature based on SPR and MMI. Anal Chim Acta 2024;1287:342043.

193. Xiang S, You H, Miao X, et al. An ultra-sensitive multi-functional optical micro/nanofiber based on stretchable encapsulation. Sensors 2021;21:7437.

194. Chen M, He Y, Liang H, et al. Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring. ACS Photonics 2022;9:1415-24.

195. Jiang Q, Liang X, Chen Z, et al. Wearable strain sensor integrating mechanoluminescent fiber with a flexible printed circuit. Opt Lett 2024;49:1221-4.

196. Guo J, Zhou B, Yang C, Dai Q, Kong L. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt Lett 2019;44:5747-50.

197. Quandt BM, Braun F, Ferrario D, et al. Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres. J R Soc Interface 2017;14:20170060.

198. Schift H, Halbeisen M, Schütz U, Delahoche B, Vogelsang K, Gobrecht J. Surface structuring of textile fibers using roll embossing. Microelect Eng 2006;83:855-8.

199. Dai M, de Jong TM, Sánchez C, et al. Surface structuring of bi-component fibres with photoembossing. RSC Adv 2012;2:9964.

200. Mekaru H, Ohtomo A, Takagi H. Effect of buffer materials on thermal imprint on plastic optical fiber. Microsyst Technol 2013;19:325-33.

201. Wang S, Wang X, Wang Q, et al. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv Mater 2023;35:e2304701.

202. Mekaru H, Ohtomo A, Takagi H, Kokubo M, Goto H. Development of reel-to-reel process system for roller-imprint on plastic fibers. Microelect Eng 2011;88:2059-62.

203. Yu C, Chen H. Nanoimprint technology for patterning functional materials and its applications. Microelect Eng 2015;132:98-119.

204. Kooy N, Mohamed K, Pin LT, Guan OS. A review of roll-to-roll nanoimprint lithography. Nanoscale Res Lett 2014;9:320.

205. Ohtomo A, Kokubo M, Goto H, Mekaru H, Takagi H. Fast and continuous patterning on the surface of plastic fiber by using thermal roller imprint. J Vac Sci Technol B 2012;30:06FB01.

206. Giovannini G, Sharma K, Boesel LF, Rossi RM. Lab-on-a-fiber wearable multi-sensor for monitoring wound healing. Adv Healthc Mater 2024;13:e2302603.

207. Li Y, Wang P, Meng C, Chen W, Zhang L, Guo S. A brief review of miniature flexible and soft tactile sensors for interventional catheter applications. Soft Sci 2022;2:6.

208. Park J, Choi WM, Kim K, Jeong WI, Seo JB, Park I. Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination. Sci Rep 2018;8:264.

209. Mishra V, Schned AR, Hartov A, Heaney JA, Seigne J, Halter RJ. Electrical property sensing biopsy needle for prostate cancer detection. Prostate 2013;73:1603-13.

210. Yu X, Wang H, Ning X, et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng 2018;2:165-72.

211. Park J, Cha DI, Jeong Y, et al. Real-time internal steam pop detection during radiofrequency ablation with a radiofrequency ablation needle integrated with a temperature and pressure sensor: preclinical and clinical pilot tests. Adv Sci 2021;8:e2100725.

212. Jeong Y, Park J, Lee J, Kim K, Park I. Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application. ACS Sens 2020;5:481-9.

213. Park YL, Elayaperumal S, Daniel B, et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions. IEEE ASME Trans Mechatron 2010;15:906-15.

214. Zhou C, Yang Y, Wang J, et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun 2021;12:5072.

215. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater 2017;2:16093.

216. Pothof F, Galchev T, Patel M, Herbawi AS, Paul O, Ruther P. Heterogeneous integration of analog CMOS chips on flexible substrates for high-resolution deep brain epilepsy diagnosis. Procedia Eng 2015;120:920-3.

217. Raducanu BC, Yazicioglu RF, Lopez CM, et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 2017;17:2388.

218. Steinmetz NA, Aydin C, Lebedeva A, et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 2021;372:eabf4588.

219. Chen G, Xu S, Zhou Q, et al. Temperature-gated light-guiding hydrogel fiber for thermoregulation during optogenetic neuromodulation. Adv Fiber Mater 2023;5:968-78.

220. Kim Y, Lee Y, Yoo J, et al. Multifunctional and flexible neural probe with thermally drawn fibers for bidirectional synaptic probing in the brain. ACS Nano 2024;18:13277-85.

221. Pu Z, Zhang X, Wu H, Wu J, Yu H, Li D.

222. Marvin JS, Shimoda Y, Magloire V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 2019;16:763-70.

223. Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem Rev 2022;122:3459-636.

224. Musolino S, Schartner EP, Tsiminis G, Salem A, Monro TM, Hutchinson MR. Portable optical fiber probe for in vivo brain temperature measurements. Biomed Opt Express 2016;7:3069-77.

225. Shin J, Liu Z, Bai W, et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci Adv 2019;5:eaaw1899.

226. Crane BC, Barwell NP, Gopal P, et al. The development of a continuous intravascular glucose monitoring sensor. J Diabetes Sci Technol 2015;9:751-61.

227. Forderhase AG, Ligons LA, Norwood E, McCarty GS, Sombers LA. Optimized fabrication of carbon-fiber microbiosensors for codetection of glucose and dopamine in brain tissue. ACS Sens 2024;9:2662-72.

228. Nan K, Babaee S, Chan WW, et al. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat Biomed Eng 2022;6:1092-104.

229. Nam S, Cha GD, Sunwoo SH, et al. Needle-like multifunctional biphasic microfiber for minimally invasive implantable bioelectronics. Adv Mater 2024;36:e2404101.

230. Abdelaziz MEMK, Tian L, Hamady M, Yang G, Temelkuran B. X-ray to MR: the progress of flexible instruments for endovascular navigation. Prog Biomed Eng 2021;3:032004.

231. Settecase F, Martin AJ, Lillaney P, Losey A, Hetts SW. Magnetic resonance-guided passive catheter tracking for endovascular therapy. Magn Reson Imaging Clin N Am 2015;23:591-605.

232. Ratnayaka K, Faranesh AZ, Hansen MS, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J 2013;34:380-9.

233. Ratnayaka K, Rogers T, Schenke WH, et al. Magnetic resonance imaging-guided transcatheter cavopulmonary shunt. JACC Cardiovasc Interv 2016;9:959-70.

234. Yildirim KD, Basar B, Campbell-Washburn AE, Herzka DA, Kocaturk O, Lederman RJ. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance. J Cardiovasc Magn Reson 2019;21:16.

235. Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O’Neill M. Cardiac electrophysiology under MRI guidance: an emerging technology. Arrhythm Electrophysiol Rev 2017;6:85-93.

236. Saikus CE, Ratnayaka K, Barbash IM, et al. MRI-guided vascular access with an active visualization needle. J Magn Reson Imaging 2011;34:1159-66.

237. Kaiser M, Detert M, Rube MA, et al. Resonant marker design and fabrication techniques for device visualization during interventional magnetic resonance imaging. Biomed Tech 2015;60:89-103.

238. Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions. Proc IEEE Inst Electr Electron Eng 2022;110:968-92.

239. Ellersiek D, Fassbender H, Bruners P, et al. A monolithically fabricated flexible resonant circuit for catheter tracking in magnetic resonance imaging. Sensor Actuat B Chem 2010;144:432-6.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/