REFERENCES
1. Ahmed A, Sharma S, Adak B, et al. Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 2022;4:e12295.
2. Sasmal A, Arockiarajan A. Recent progress in flexible magnetoelectric composites and devices for next generation wearable electronics. Nano Energy 2023;115:108733.
4. Xi Y, Tan P, Li Z, Fan Y. Self-powered wearable IoT sensors as human-machine interfaces. Soft Sci 2023;3:26.
5. Gu Y, Zhang T, Chen H, et al. Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res Lett 2019;14:263.
6. Butt MA, Kazanskiy NL, Khonina SN. Revolution in flexible wearable electronics for temperature and pressure monitoring - a review. Electronics 2022;11:716.
7. Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.
8. Zhu P, Li Z, Pang J, He P, Zhang S. Latest developments and trends in electronic skin devices. Soft Sci 2024;4:17.
9. Shi J, Liu S, Zhang L, et al. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater 2020;32:e1901958.
10. Wei X, Liang X, Meng C, Cao S, Shi Q, Wu J. Multimodal electronic textiles for intelligent human-machine interfaces. Soft Sci 2023;3:17.
11. Heo JS, Eom J, Kim YH, Park SK. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 2018;14:1703034.
12. Zhu C, Wu J, Yan J, Liu X. Advanced fiber materials for wearable electronics. Adv Fiber Mater 2023;5:12-35.
13. Fang C, Xu B, Li M, Han J, Yang Y, Liu X. Advanced design of fibrous flexible actuators for smart wearable applications. Adv Fiber Mater 2024;6:622-57.
14. Sheng F, Zhao C, Zhang B, Tan Y, Dong K. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare. Soft Sci 2024;4:2.
15. Yin J, Wang S, Di Carlo A, et al. Smart textiles for self-powered biomonitoring. Med X 2023;1:1.
16. Yu H, Zhang S, Lian Y, et al. Electronic textile with passive thermal management for outdoor health monitoring. Adv Fiber Mater 2024;6:1241-52.
17. Wang P, Liu G, Sun G, Meng C, Shen G, Li Y. An integrated bifunctional pressure‒temperature sensing system fabricated on a breathable nanofiber and powered by rechargeable zinc–air battery for long-term comfortable health care monitoring. Adv Fiber Mater 2024;6:1037-52.
18. Wicaksono I, Tucker CI, Sun T, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. Npj Flex Electron 2020;4:5.
19. Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. Electronic textiles for energy, sensing, and communication. iScience 2022;25:104174.
20. Li T, Qiao F, Huang P, et al. Flexible optical fiber-based smart textile sensor for human–machine interaction. IEEE Sensors J 2022;22:19336-45.
21. Wang W, Yu A, Liu X, et al. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020;71:104605.
22. Seyedin S, Carey T, Arbab A, et al. Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale 2021;13:12818-47.
23. Gopalsamy C, Park S, Rajamanickam R, Jayaraman S. The Wearable MotherboardTM: the first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Real 1999;4:152-68.
24. Zhang L, Wang Z, Volakis JL. Textile antennas and sensors for body-worn applications. IEEE Antennas Wireless Propag Lett 2012;11:1690-3.
25. Mokhtari F, Spinks GM, Fay C, et al. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv Mater Technol 2020;5:1900900.
26. Wang B, Facchetti A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices. Adv Mater 2019;31:e1901408.
27. Rao S, Llombart N, Moradi E, et al. Miniature implantable and wearable on-body antennas: towards the new era of wireless body-centric systems [antenna applications corner]. IEEE Antennas Propag Mag 2014;56:271-91.
28. Wang Z, Zhang L, Volakis J. Textile antennas for wearable radio frequency applications. TLIST 2013;2:105-12. Available from: http://api.semanticscholar.org/CorpusID:56475623. [Last accessed on 25 Nov 2024]
31. Post ER, Orth M, Russo PR, Gershenfeld N. E-broidery: design and fabrication of textile-based computing. IBM Syst J 2000;39:840-60.
32. Bourdon L, Coli S, Loriga G et al. First results with the wealthy garment electrocardiogram monitoring system. In: Computers in Cardiology, 2005; 2005 Sep 25-28; Lyon, France. IEEE; 2005. pp. 615-8.
33. Bonderover E, Wagner S. A Woven inverter circuit for e-textile applications. IEEE Electron Device Lett 2004;25:295-7.
34. Cherenack K, van Pieterson L. Smart textiles: challenges and opportunities. J Appl Phys 2012;112:091301.
35. Paradiso R, Loriga G, Taccini N, Gemignani A, Ghelarducci B. WEALTHY - a wearable healthcare system: new frontier on e-textile. JTIT 2005;22:105-13.
36. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol Meas 2007;28:1405-19.
37. Pandian PS, Safeer KP, Gupta P, Shakunthala DT, Sundersheshu BS, Padaki VC. Wireless sensor network for wearable physiological monitoring. JNW 2008;3:21-9.
38. Kiourti A, Lee C, Volakis JL. Fabrication of textile antennas and circuits with 0.1 mm precision. Antennas Wirel Propag Lett 2016;15:151-3.
39. Tsolis A, Whittow W, Alexandridis A, Vardaxoglou J. Embroidery and related manufacturing techniques for wearable antennas: challenges and opportunities. Electronics 2014;3:314-38.
40. Castano LM, Flatau AB. Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 2014;23:053001.
41. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors 2014;14:11957-92.
42. Lin Z, Yang J, Li X, et al. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 2018;28:1704112.
43. Jin H, Matsuhisa N, Lee S, Abbas M, Yokota T, Someya T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv Mater 2017;29:1605848.
44. Bai W, Zhai J, Zhou S, et al. Flexible smart wearable Co@C@carbon fabric for efficient electromagnetic shielding, thermal therapy, and human movement monitoring. Ind Eng Chem Res 2022;61:11825-39.
45. Fan W, He Q, Meng K et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:eaay2840.
46. Jeong S, Lee Y, Lee M, Song WJ, Park J, Sun J. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 2021;79:105463.
47. Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.
48. Khozouie N, Malekhoseini R. Pregnancy healthcare monitoring system: a review. Smart Health 2024;31:100433.
49. Hu X, Chen Y, Wang X, et al. Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for real-time stress management. Adv Funct Mater 2024;34:2312897.
50. Liu L, Li J, Tian Z, et al. Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring. Nano Energy 2024;128:109817.
51. Yang Y, Wei X, Zhang N, et al. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876.
52. Peng Y, Dong J, Sun J, et al. Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 2023;110:108374.
53. Zhao Z, Yan C, Liu Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater 2016;28:10267-74.
54. Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in printed electronic textiles. Adv Sci 2024;11:e2304140.
55. Cesano F, Uddin MJ, Lozano K, Zanetti M, Scarano D. All-carbon conductors for electronic and electrical wiring applications. Front Mater 2020;7:219.
56. Dang C, Wang Z, Hughes-Riley T, et al. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024;53:8790-846.
57. Boumegnane A, Nadi A, Cherkaoui O, Tahiri M. Inkjet printing of silver conductive ink on textiles for wearable electronic applications. Mater Today Proc 2022;58:1235-41.
58. Smith AA, Li R, Xu L, Tse ZTH. A narrative review of in-textile sensors in human health applications. Adv Mater Technol 2024;9:2302141.
59. Jones CF, Resina L, Ferreira FC, Sanjuan-alberte P, Esteves T. Conductive core–shell nanoparticles: synthesis and applications. J Phys Chem C 2024;128:11083-100.
60. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z. Multifunctional composite core-shell nanoparticles. Nanoscale 2011;3:4474-502.
61. Ala O, Fan Q. Applications of conducting polymers in electronic textiles. Res J Text Apparel 2009;13:51-68.
63. Lekpittaya P, Yanumet N, Grady BP, O’Rear EA. Resistivity of conductive polymer–coated fabric. J Appl Polym Sci 2004;92:2629-36.
64. Wallace GG, Campbell TE, Innis PC. Putting function into fashion: organic conducting polymer fibres and textiles. Fibers Polym 2007;8:135-42.
65. Kim HK, Kim MS, Chun SY, et al. Characteristics of electrically conducting polymer-coated textiles. Mol Cryst Liq Cryst 2003;405:161-9.
66. Seidel JM, Malmonge SM. Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Mat Res 2000;3:79-83.
67. Shang J, Shao Z, Chen X. Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008;9:1208-13.
68. Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010;31:2701-16.
69. Frutiger A, Muth JT, Vogt DM, et al. Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 2015;27:2440-6.
70. Agcayazi T, Chatterjee K, Bozkurt A, Ghosh TK. Flexible interconnects for electronic textiles. Adv Mater Technol 2018;3:1700277.
71. Mokhtar SMA, Alvarez de Eulate E, Yamada M, Prow TW, Evans DR. Conducting polymers in wearable devices. Med Devices Sens 2021;4:e10160.
72. Grancarić AM, Jerković I, Koncar V, et al. Conductive polymers for smart textile applications. J Ind Text 2018;48:612-42.
73. Chatterjee A, Deopura BL. Carbon nanotubes and nanofibre: an overview. Fibers Polym 2002;3:134-9.
74. Wang L. Functional nanofibre: enabling material for the next generation smart textiles. JFBI 2018;1:81-92.
75. Liu Y, Wang X, Qi K, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18:3454.
76. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett 2008;8:3137-40.
77. Chiu CW, Li JW, Huang CY, et al. Controlling the structures, flexibility, conductivity stability of three-dimensional conductive networks of silver nanoparticles/carbon-based nanomaterials with nanodispersion and their application in wearable electronic sensors. Nanomaterials 2020;10:1009.
78. Jiang L, Hong H, Hu J. Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation. Text Res J 2021;91:2487-99.
80. Özgür Ü, Alivov YI, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys 2005;98:041301.
81. Mitzi DB. Templating and structural engineering in organic–inorganic perovskites. J Chem Soc Dalton Trans ;2001:1-12.
82. Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat Rev Mater 2017;2:BFnatrevmats201699.
83. Yang D, Westreich P, Frindt R. Transition metal dichalcogenide/polymer nanocomposites. Nanostruct Mater 1999;12:467-70.
84. Wang Y, Sarkar S, Yan H, Chhowalla M. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat Electron 2024;7:638-45.
85. Zheng Y, Yin R, Zhao Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 2021;420:127720.
86. Silva N, Gonçalves LM, Carvalho H. Deposition of conductive materials on textile and polymeric flexible substrates. J Mater Sci Mater Electron 2013;24:635-43.
87. Kwon S, Kim H, Choi S, et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett 2018;18:347-56.
88. Hwang YH, Noh B, Lee J, Lee HS, Park Y, Choi KC. High-performance and reliable white organic light-emitting fibers for truly wearable textile displays. Adv Sci 2022;9:e2104855.
89. Zhao Y, Zhai Q, Dong D, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal Chem 2019;91:6569-76.
90. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 2015;27:2433-9.
91. You X, He J, Nan N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli. J Mater Chem C 2018;6:12981-91.
92. Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:e1901558.
93. Rotzler S, Schneider-ramelow M. Washability of E-textiles: failure modes and influences on washing reliability. Textiles 2021;1:37-54.
94. Li J, Zhang X, Ding Y, et al. Multifunctional carbon fiber@NiCo/polyimide films with outstanding electromagnetic interference shielding performance. Chem Eng J 2022;427:131937.
95. Cheng Y, Zhu M, Chi M, et al. MXene/TPU hybrid fabrics enable smart wound management and thermoresponsive drug delivery. ACS Appl Mater Interfaces 2024;16:20105-18.
96. Chiu C, Lin C, Hong P. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 2011;18:367-72.
97. Alagirusamy R, Fangueiro R, Ogale V, Padaki N. Hybrid yarns and textile preforming for thermoplastic composites. Text Prog 2006;38:1-71.
98. Horan RL, Collette AL, Lee C, Antle K, Chen J, Altman GH. Yarn design for functional tissue engineering. J Biomech 2006;39:2232-40.
100. Selbmann R, Gibmeier J, Simon N, Kräusel V, Bergmann M. Residual stress engineering for wire drawing of austenitic stainless steel X5CrNi18-10 by variation in die geometries - effect of drawing speed and process temperature. Materials 2024;17:1174.
101. Bhuyan P, Singh M, Wei Y, et al. Thread-analogous elastic fibers with liquid metal core by drawing at room temperature for multifunctional smart textiles. Chem Eng J 2024;480:147944.
102. Ramamoorthy SK, Skrifvars M, Persson A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 2015;55:107-62.
103. Akter T, Hossain MS. Application of plant fibers in environmental friendly composites for developed properties: a review. Clean Mater 2021;2:100032.
104. Cheng H, Dowd MK, Selling G, Biswas A. Synthesis of cellulose acetate from cotton byproducts. Carbohydr Polym 2010;80:449-52.
105. Zhang S, Chen XW, Li YL, Du WP. Study on the thermal properties of high-strength flame resistant vinylon blending fabric. AMR 2012;627:105-9.
107. Hwang B, Lund A, Tian Y, Darabi S, Müller C. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl Mater Interfaces 2020;12:27537-44.
108. Havigh R, Mahmoudi Chenari H. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Sci Rep 2022;12:10704.
109. Bengtsson A, Hecht P, Sommertune J, Ek M, Sedin M, Sjöholm E. Carbon fibers from lignin–cellulose precursors: effect of carbonization conditions. ACS Sustain Chem Eng 2020;8:6826-33.
110. Gupta A, Dhakate SR, Pal P, Dey A, Iyer PK, Singh DK. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diam Relat Mater 2017;78:31-8.
111. Pourian Azar G, Fox D, Fedutik Y, Krishnan L, Cobley AJ. Functionalised copper nanoparticle catalysts for electroless copper plating on textiles. Surf Coat Technol 2020;396:125971.
112. Moazzenchi B, Montazer M. Click electroless plating of nickel nanoparticles on polyester fabric: electrical conductivity, magnetic and EMI shielding properties. Colloid Surfacs A 2019;571:110-24.
113. Zuo R, Chen J, Han Z, Dong Y, Jow J. Electroless silver plating on modified fly ash particle surface. Appl Surf Sci 2020;513:145857.
114. Hussain N, Yousif M, Mehdi M, et al. Electroless deposition: a superficial route to synthesis of highly conductive electrospun nylon 6 nanofibers. Fibers Polym 2022;23:680-9.
115. Qi Q, Wang Y, Ding X, Wang W, Xu R, Yu D. High-electromagnetic-shielding cotton fabric prepared using multiwall carbon nanotubes/nickel–phosphorus electroless plating. Appl Organomet Chem 2020;34:e5434.
116. Hannula P, Peltonen A, Aromaa J, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers. Carbon 2016;107:281-7.
117. Mei X, Lu L, Xie Y, Yu YX, Tang Y, Teh KS. Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding. ACS Appl Mater Interfaces 2020;12:49030-41.
118. Malureanu R, Zalkovskij M, Andryieuski A, Lavrinenko AV. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles. J Electrochem Soc 2010;157:K284.
119. Gill TM, Zhao J, Berenschot EJW, Tas N, Zheng X. Conformal electroless nickel plating on silicon wafers, convex and concave pyramids, and ultralong nanowires. ACS Appl Mater Interfaces 2018;10:22834-40.
120. Bahadormanesh B, Ghorbani M, Kordkolaei NL. Electrodeposition of nanocrystalline Zn/Ni multilayer coatings from single bath: Influences of deposition current densities and number of layers on characteristics of deposits. Appl Surf Sci 2017;404:101-9.
121. Illy BN, Cruickshank AC, Schumann S, et al. Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation. J Mater Chem 2011;21:12949.
122. Preda N, Costas A, Lilli M, et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Compos Part A Appl S 2021;149:106488.
123. Liu C, Li X, Li X, et al. Preparation of conductive polyester fibers using continuous two-step plating silver. Materials 2018;11:2033.
124. Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168-94.
125. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater 2020;32:e1904911.
127. Gumennik A, Stolyarov AM, Schell BR, et al. All-in-fiber chemical sensing. Adv Mater 2012;24:6005-9.
128. Orf ND, Shapira O, Sorin F, et al. Fiber draw synthesis. Proc Natl Acad Sci U S A 2011;108:4743-7.
129. Hufenus R, Yan Y, Dauner M, Kikutani T. Melt-spun fibers for textile applications. Materials 2020;13:4298.
130. Ryu S, Lee P, Chou JB, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015;9:5929-36.
131. Cheng Y, Wang R, Sun J, Gao L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 2015;27:7365-71.
132. Probst H, Katzer K, Nocke A, Hickmann R, Zimmermann M, Cherif C. Melt spinning of highly stretchable, electrically conductive filament yarns. Polymers 2021;13:590.
133. Mirabedini A, Foroughi J, Wallace GG. Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Adv 2016;6:44687-716.
134. Zhao Y, Dong D, Gong S, et al. A moss-inspired electroless gold-coating strategy toward stretchable fiber conductors by dry spinning. Adv Elect Mater 2019;5:1800462.
135. Biswas MC, Bush B, Ford E. Glucaric acid additives for the antiplasticization of fibers wet spun from cellulose acetate/acetic acid/water. Carbohydr Polym 2020;245:116510.
136. Fahma F, Febiyanti I, Lisdayana N, et al. Production of polyvinyl alcohol–alginate–nanocellulose fibers. Starch Stärke 2022;74:2100032.
137. Zhou G, Byun JH, Oh Y, et al. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl Mater Interfaces 2017;9:4788-97.
138. Ma R, Lee J, Choi D, Moon H, Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 2014;14:1944-51.
139. Vigolo B, Pénicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000;290:1331-4.
140. Eom W, Shin H, Ambade RB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun 2020;11:2825.
141. León-Boigues L, Flores A, Gómez-Fatou MA, Vega JF, Ellis GJ, Salavagione HJ. PET/graphene nanocomposite fibers obtained by dry-jet wet-spinning for conductive textiles. Polymers 2023;15:1245.
142. Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and applications of bioinspired fiber systems. ACS Nano 2019;13:2749-72.
143. Busolo T, Szewczyk PK, Nair M, Stachewicz U, Kar-Narayan S. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl Mater Interfaces 2021;13:16876-86.
144. Tang Z, Jia S, Wang F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl Mater Interfaces 2018;10:6624-35.
145. Lu Y, Xiao X, Fu J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 2019;355:532-9.
146. Gao T, Yang Z, Chen C, et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017;11:11513-20.
147. Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021;84:105866.
148. Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater 2017;29:1701218.
149. Quan Z, Larimore Z, Wu A, et al. Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 2016;126:139-48.
150. Kwak SS, Yoon H, Kim S. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv Funct Mater 2019;29:1804533.
151. Hallal A, Younes R, Fardoun F. Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos Part B Eng 2013;50:22-31.
152. Zhao Z, Huang Q, Yan C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020;70:104528.
153. Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 2020;11:2868.
154. Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibres. Nat Mater 2007;6:357-62.
155. Buechley L, Eisenberg M. Fabric PCBs, electronic sequins, and socket buttons: techniques for e-textile craft. Pers Ubiquit Comput 2009;13:133-50.
156. Marsden R. Cotton weaving: Its development, principles, and practice. London: George Bell & Sons; 1895. pp. 141-75. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=wLJLAAAAIAAJ&oi=fnd&pg=PR21&dq=Cotton+weaving:+Its+development,+principles,+and+practice.&ots=8c7KSTxq9_&sig=TTEEFBryzIzuqt5FN81a3EQWiho#v=onepage&q=Cotton%20weaving%3A%20Its%20development%2C%20principles%2C%20and%20practice.&f=false. [Last accessed on 25 Nov 2024].
157. Gokarneshan N. Fabric structure and design. New Delhi: New Age International; 2004. pp. 7-45. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=VQGx5ZyFm2AC&oi=fnd&pg=PA1&dq=Fabric+structure+and+design.&ots=PCyQ44h1jH&sig=HlA2xr0-yQef2qfC5iagT9n_5Qo#v=onepage&q=Fabric%20structure%20and%20design.&f=false. [Last accessed on 25 Nov 2024].
158. Kim G, Vu CC, Kim J. Single-layer pressure textile sensors with woven conductive yarn circuit. Appl Sci 2020;10:2877.
159. Chen J, He T, Du Z, Lee C. Review of textile-based wearable electronics: from the structure of the multi-level hierarchy textiles. Nano Energy 2023;117:108898.
160. Pu J, Ma K, Luo Y, et al. Textile electronics for wearable applications. Int J Extrem Manuf 2023;5:042007.
161. Cheng KB, Ramakrishna S, Lee KC. Electrostatic discharge properties of knitted copper wire/glass fiber fabric reinforced polypropylene composites. Polym Composite 2001;22:185-96.
162. Zhang H, Tao X, Yu T, Wang S. Conductive knitted fabric as large-strain gauge under high temperature. Sensor Actuat A Phys 2006;126:129-40.
163. Katragadda RB, Xu Y. A novel intelligent textile technology based on silicon flexible skins. Sensor Actuat A Phys 2008;143:169-74.
164. He Y, Mei M, Yang X, Wei K, Qu Z, Fang D. Experimental characterization of the compaction behavior in preforming process for 3D stitched carbon fabric. Compos Commun 2020;19:203-9.
165. Wan Y, Huang Y, He F, Li Q, Lian J. Tribological properties of three-dimensional braided carbon/Kevlar/epoxy hybrid composites under dry and lubricated conditions. Mater Sci Eng A 2007;452-3:202-9.
166. Yang S, Macharia DK, Ahmed S, et al. Flexible and reusable non-woven fabric photodetector based on polypyrrole/crystal violate lactone for NIR light detection and writing. Adv Fiber Mater 2020;2:150-60.
167. Kang TH, Merritt CR, Grant E, Pourdeyhimi B, Nagle HT. Nonwoven fabric active electrodes for biopotential measurement during normal daily activity. IEEE Trans Biomed Eng 2008;55:188-95.
168. Zhou Y, He J, Wang H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci Rep 2017;7:12949.
169. Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interfaces 2021;13:11260-7.
170. Sun C, Li X, Cai Z, Ge F. Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor. Electrochim Acta 2019;296:617-26.
171. Ali I, Islam MR, Yin J, et al. Advances in smart photovoltaic textiles. ACS Nano 2024;18:3871-915.
172. Jan AA, Kim S, Kim S. A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft Sci 2024;4:10.
173. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci 2022;2:22.
174. Kim N, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of physiological and muscle motions. Soft Sci 2022;2:8.
175. Jiang W, Li T, Hussain B, et al. Facile fabrication of cotton-based thermoelectric yarns for the construction of textile generator with high performance in human heat harvesting. Adv Fiber Mater 2023;5:1725-36.
176. Li M, Li Z, Ye X, Zhang X, Qu L, Tian M. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl Mater Interfaces 2021;13:17110-7.
177. Liu M, Zhang Y, Ou L, et al. A stretchable tactile sensor based on ALD-prepared conductive composite textile. Appl Mater Today 2024;37:102099.
178. Kovalska E, Lam HT, Saadi Z, et al. Textile beeswax triboelectric nanogenerator as self-powered sound detectors and mechano-acoustic energy harvesters. Nano Energy 2024;120:109109.
179. Zhao X, Liu Z, Sun Z, Zhang Y, Han T. Fabricating a photochromic Schiff base into a wearable cellulose sensor and a smart textile for ultraviolet radiation monitoring outdoors. Mater Lett 2024;364:136382.
180. Zhao P, Song Y, Xie P, et al. All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv Funct Mater 2023;33:2301816.
181. He X, Yang S, Pei Q, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis. ACS Sens 2020;5:1548-54.
182. Chen C, Xie G, Dai J, et al. Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 2023;116:108788.
183. Golparvar AJ, Yapici MK. Graphene smart textile-based wearable eye movement sensor for electro-ocular control and interaction with objects. J Electrochem Soc 2019;166:B3184-93.
184. Mattana G, Kinkeldei T, Leuenberger D, et al. Woven temperature and humidity sensors on flexible plastic substrates for E-textile applications. IEEE Sensors J 2013;13:3901-9.
185. Li Z, Hansen K, Yao Y, Ma Y, Moon K, Wong CP. The conduction development mechanism of silicone-based electrically conductive adhesives. J Mater Chem C 2013;1:4368.
186. Ding Y, Jiang J, Wu Y, et al. Porous conductive textiles for wearable electronics. Chem Rev 2024;124:1535-648.
187. Wei C, Cheng R, Ning C, et al. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv Funct Mater 2023;33:2303562.
188. Vu CC, Kim J. Human motion recognition by textile sensors based on machine learning algorithms. Sensors 2018;18:3109.
189. Ejupi A, Menon C. Detection of talking in respiratory signals: a feasibility study using machine learning and wearable textile-based sensors. Sensors 2018;18:2474.
190. Zhu J, Cho M, Li Y, et al. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021;86:106035.
191. Jiang Y, An J, Liang F, et al. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res 2022;15:8389-97.
192. Fang Y, Zou Y, Xu J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 2021;33:e2104178.
193. Zhao P, Song Y, Hu Z, et al. Artificial intelligence enabled biodegradable all-textile sensor for smart monitoring and recognition. Nano Energy 2024;130:110118.
194. Avellar L, Stefano Filho C, Delgado G, Frizera A, Rocon E, Leal-Junior A. AI-enabled photonic smart garment for movement analysis. Sci Rep 2022;12:4067.
195. Xiong Y, Luo L, Yang J, et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition. Nano Energy 2023;107:108137.
196. Ali SM, Sovuthy C, Imran MA, Socheatra S, Abbasi QH, Abidin ZZ. Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: state-of-the-art. Micromachines 2020;11:888.
197. Tsolis A, Bakogianni S, Angelaki C, Alexandridis AA. A review of clothing components in the development of wearable textile antennas: design and experimental procedure. Sensors 2023;23:3289.
198. Wang Z, Liu Y, Zhou Z, Chen P, Peng H. Towards integrated textile display systems. Nat Rev Electr Eng 2024;1:466-77.
199. Choi S, Jo W, Jeon Y, et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flex Electron 2020;4:96.
200. Song H, Song YJ, Hong J, et al. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. npj Flex Electron 2022;6:199.
201. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.
202. Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev 2023;123:613-62.
203. Zhang J, Zhang Y, Li Y, Wang P. Textile-based flexible pressure sensors: a review. Polym Rev 2022;62:65-94.
204. Ouyang Z, Li S, Liu J, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022;104:107963.
205. Hu X, Huang T, Liu Z, et al. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J Mater Chem A 2020;8:14778-87.
206. Sheng F, Yi J, Shen S, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl Mater Interfaces 2021;13:44868-77.
207. Li Y, Yin J, Liu S, et al. Learning hand kinematics for Parkinson’s disease assessment using a multimodal sensor glove. Adv Sci 2023;10:e2206982.
208. Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11:444.
209. Zhang Y, Zhou Z, Fan Z, et al. Self-powered multifunctional transient bioelectronics. Small 2018;14:e1802050.
210. Lin R, Fan Y, Xie Y, et al. A self-powered wearable seizure-monitoring/brain-stimulating system for potential epilepsy treatment. Nano Energy 2023;107:108121.
211. Li BM, Reese BL, Ingram K, et al. Textile-integrated liquid metal electrodes for electrophysiological monitoring. Adv Healthc Mater 2022;11:e2200745.
212. Promphet N, Hinestroza JP, Rattanawaleedirojn P, et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sensor Actuat B Chem 2020;321:128549.
213. Takeshita T, Yoshida M, Takei Y, et al. Relationship between contact pressure and motion artifacts in ECG measurement with electrostatic flocked electrodes fabricated on textile. Sci Rep 2019;9:5897.
214. Wang L, Pan Y, He D, et al. Conductive polyester fabrics with high washability as electrocardiogram textile electrodes. ACS Appl Polym Mater 2022;4:1440-7.
215. Tu H, Li X, Lin X, Lang C, Gao Y. Washable and flexible screen-printed Ag/AgCl electrode on textiles for ECG monitoring. Polymers 2023;15:3665.
216. Zhao J, Deng J, Liang W, et al. Water-retentive, 3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition. Compos Sci Technol 2022;227:109606.
217. Dore H, Aviles-Espinosa R, Luo Z, Anton O, Rabe H, Rendon-Morales E. Characterisation of textile embedded electrodes for use in a neonatal smart mattress electrocardiography system. Sensors 2021;21:999.
218. Ozturk O, Yapici MK. Surface Electromyography with wearable graphene textiles. IEEE Sensors J 2021;21:14397-406.
219. Spanu A, Botter A, Zedda A, Cerone GL, Bonfiglio A, Pani D. Dynamic surface electromyography using stretchable screen-printed textile electrodes. IEEE Trans Neural Syst Rehabil Eng 2021;29:1661-8.
220. Carneiro MR, de Almeida AT, Tavakoli M. Wearable and comfortable e-textile headband for long-term acquisition of forehead EEG signals. IEEE Sensors J 2020;20:15107-16.
221. Tseghai GB, Malengier B, Fante KA, Van Langenhove L. Hook fabric electroencephalography electrode for brain activity measurement without shaving the head. Polymers 2023;15:3673.
222. Toral V, Castillo E, Albretch A, et al. Cost-effective printed electrodes based on emerging materials applied to biosignal acquisition. IEEE Access 2020;8:127789-800.
223. Rusanen M, Huttunen R, Korkalainen H, et al. Generalizable deep learning-based sleep staging approach for ambulatory textile electrode headband recordings. IEEE J Biomed Health Inform 2023;27:1869-80.
224. Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 2021;12:3317.
225. Fan W, Liu T, Wu F, et al. An antisweat interference and highly sensitive temperature sensor based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 2023;17:21073-82.
226. Li W, Song Z, Kong H, et al. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022;104:107935.
227. Ma L, Wu R, Patil A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 2019;29:1904549.
228. Ali S, Khan S, Khan A, Bermak A. Developing conductive fabric threads for human respiratory rate monitoring. IEEE Sensors J 2021;21:4350-6.
229. Takamatsu S, Lonjaret T, Crisp D, Badier JM, Malliaras GG, Ismailova E. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci Rep 2015;5:15003.
230. Kim H, Rho S, Lim D, Jeong W. Characterization of embroidered textile-based electrode for EMG smart wear according to stitch technique. Fash Text 2023;10:351.
231. Tseghai GB, Malengier B, Fante KA, Van Langenhove L. Dry electroencephalography textrode for brain activity monitoring. IEEE Sensors J 2021;21:22077-85.
232. Ha H, Suryaprabha T, Choi C, et al. Recent research trends in textile-based temperature sensors: a mini review. Nanotechnology 2023;34:422001.
233. Zhang X, Tang S, Ma R, et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 2022;103:107778.
234. Nicolò A, Massaroni C, Schena E, Sacchetti M. The importance of respiratory rate monitoring: from healthcare to sport and exercise. Sensors 2020;20:6396.
235. Feng Z, He Q, Qiu J, et al. Iontronic textile-based capacitive pressure sensor for unconstrained respiration and heartbeat monitoring. Adv Mater Technol 2023;8:2300949.
236. Lin Z, Nie S, He Q, et al. Wearable and flexible helical pressure sensor for noninvasive respiratory monitoring. ACS Appl Eng Mater 2023;1:2765-71.
237. Khan A, Haque MN, Kabiraz DC, et al. A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Sensor Actuat A Phys 2023;350:114093.
238. Liu L, Ahn JH, Wang B. Wearable plasmonic biofluid sensors as your photonic skin. Soft Sci 2023;3:6.
239. Brasier N, Niederberger C, Salvatore GA. The sweat rate as a digital biomarker in clinical medicine beyond sports science. Soft Sci 2024;4:6.
240. Zhao G, Li Z, Huang X, Zhang Q, Liu Y, Yu X. Recent advances of sweat sampling, sensing, energy-harvesting and data-display toward flexible sweat electronics. Soft Sci 2024;4:18.
241. Li X, Dai B, Wang L, Yang X, Xu T, Zhang X. Radiative cooling and anisotropic wettability in E-textile for comfortable biofluid monitoring. Biosens Bioelectron 2023;237:115434.
242. Peng J, Cheng H, Liu J, et al. Superhydrophobic MXene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors. Adv Fiber Mater 2023;5:2099-113.
243. Zhou Z, Padgett S, Cai Z, et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 2020;155:112064.
244. Bing Y, Xue H, Li F, Zhao H, Lin X, Zhang T. Real-time sleep apnea monitoring system enabled by high-performance strain sensors based on elastic E-fibers. IEEE Sensors J 2024;24:19756-62.
245. Hwang S, Kang M, Lee A, et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat Commun 2022;13:3173.
246. Yang W, Lin S, Gong W, et al. Single body-coupled fiber enables chipless textile electronics. Science 2024;384:74-81.
247. Wang P, Ma X, Lin Z, et al. Well-defined in-textile photolithography towards permeable textile electronics. Nat Commun 2024;15:887.
248. Hoofnagle CJ, van der Sloot B, Borgesius FZ. The European Union general data protection regulation: what it is and what it means. Inf Commun Technol L 2019;28:65-98.