REFERENCES

1. He J, Wei R, Ma X, et al. Contactless user-interactive sensing display for human-human and human-machine interactions. Adv Mater 2024;36:e2401931.

2. Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 2018;28:1801834.

3. Park J, Seung H, Kim DC, Kim MS, Kim D. Unconventional image-sensing and light-emitting devices for extended reality. Adv Funct Mater 2021;31:2009281.

4. Yin H, Zhu Y, Youssef K, Yu Z, Pei Q. Structures and materials in stretchable electroluminescent devices. Adv Mater 2022;34:e2106184.

5. Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.

6. Zhang W, Wang X, Duan J, et al. Recent research advances in textile-based flexible power supplies and displays for smart wearable applications. ACS Appl Electron Mater 2024;6:5429-55.

7. Srinivasan KP, Muthuramalingam T, Elsheikh AH. A review of flexible printed sensors for automotive infotainment systems. Archiv Civ Mech Eng 2023;23:604.

8. Jo M, Kim DJ, Lee SS, Tahir U. Transparent and flexible led-embedded display film using micro metal mesh. J Mech Sci Technol 2024;38:357-63.

9. Back JH, Kwon Y, Cho H, et al. Visible-light-curable acrylic resins toward UV-light-blocking adhesives for foldable displays. Adv Mater 2023;35:e2204776.

10. Han SH, Shin JH, Choi SS. Analytical investigation of multi-layered rollable displays considering nonlinear elastic adhesive interfaces. Sci Rep 2023;13:5697.

11. Jeong EG, Kwon JH, Kang KS, Jeong SY, Choi KC. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J Inform Display 2020;21:19-32.

12. Byun J, Chung S, Hong Y. Artificial soft elastic media with periodic hard inclusions for tailoring strain-sensitive thin-film responses. Adv Mater 2018;30:e1802190.

13. Wang W, Wang S, Rastak R, et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron 2021;4:143-50.

14. Wang C, Hu H, Peng D, Dong L, Zhu D. Soft devices empowered by mechanoluminescent materials. Soft Sci 2023;3:39.

15. Jung H, Park CI, Gee MB, et al. High-resolution active-matrix micro-LED stretchable displays. J Soc Info Display 2023;31:201-10.

16. Li X, Hasan MM, Kim H, Jang J. Oxide electronics transferred on stiff-stripe/PDMS substrate for high-resolution stretchable displays. IEEE Trans Electron Devices 2019;66:2971-8.

17. Kim DW, Kim SW, Lee G, et al. Fabrication of practical deformable displays: advances and challenges. Light Sci Appl 2023;12:61.

18. Lee Y, Cho H, Yoon H, et al. Advancements in electronic materials and devices for stretchable displays. Adv Mater Technol 2023;8:2201067.

19. Lee B, Cho H, Moon S, et al. Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat Electron 2023;6:307-18.

20. Cho H, Lee B, Jang D, Yoon J, Chung S, Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Mater Horiz 2022;9:2053-75.

21. Chen J, Wang J, Ji K, et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res 2022;15:5492-9.

22. Shankar U, Oberoi D, Bandyopadhyay A. A review on the alternative of indium tin oxide coated glass substrate in flexible and bendable organic optoelectronic device. Polym Advan Technol 2022;33:3078-111.

23. Chen J, Liu CT. Technology advances in flexible displays and substrates. IEEE Access 2013;1:150-8.

24. Yoo J, Li S, Kim DH, Yang J, Choi MK. Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horiz 2022;7:801-21.

25. Baeg K, Lee J. Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv Mater Technol 2020;5:2000071.

26. Jiao R, Wang R, Wang Y, et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst Nanoeng 2023;9:149.

27. Ye C, Stewart BG, Sitaraman SK. Stretchability of serpentine interconnect on polymer substrate for flexible electronics: a geometry and material sensitivity analysis. In: 2020 IEEE 70th Electronic Components and Technology Conference (ECTC); 2020 Jun 03-30; Orlando, USA. IEEE; 2020. pp. 1533-41.

28. Li D, Cui T, Jian J, et al. Lantern-inspired on-skin helical interconnects for epidermal electronic sensors. Adv Funct Mater 2023;33:2213335.

29. Yang Z, Zhai Z, Song Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv Mater 2020;32:e1907495.

30. Xu R, He Y, Li X, Lu M, Chen Y. Snap-fit mechanical metamaterials. Appl Mater Today 2023;30:101714.

31. Pan F, Li Y, Li Z, Yang J, Liu B, Chen Y. 3D pixel mechanical metamaterials. Adv Mater 2019;31:e1900548.

32. Meng K, Parry G, Hurier M, Ben Dahmane N, Coupeau C. Elastic-plastic buckling of gold thin films into straight-sided blisters. Surf Coat Tech 2024;482:130642.

33. Lee DW, Lee JH, Jin J. Innovative evolution of buckling structures for flexible electronics. Compos Struct 2018;204:487-99.

34. Sarabia-Vallejos MA, Cerda-Iglesias FE, Pérez-Monje DA, et al. Smart polymer surfaces with complex wrinkled patterns: reversible, non-planar, gradient, and hierarchical structures. Polymers 2023;15:612.

35. Jin H, Lu W, Cordill MJ, Schmidegg K. In situ study of cracking and buckling of chromium films on PET substrates. Exp Mech 2011;51:219-27.

36. Chen S, Chen J, Zhang X, Li ZY, Li J. Kirigami/Origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”. Light Sci Appl 2020;9:75.

37. Xu L, Shyu TC, Kotov NA. Origami and Kirigami nanocomposites. ACS Nano 2017;11:7587-99.

38. Zhai Z, Wu L, Jiang H. Mechanical metamaterials based on Origami and Kirigami. Appl Phys Rev 2021;8:041319.

39. Park J, Lim H, Yea J, et al. Kirigami-inspired gas sensors for strain-insensitive operation. Results Eng 2024;21:101805.

40. Yoo PJ, Suh KY, Park SY, Lee HH. Physical self-assembly of microstructures by anisotropic buckling. Adv Mater 2002;14:1383-7.

41. Singh JP, Chu H, Abell J, Tripp RA, Zhao Y. Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 2012;4:3410-4.

42. Bian J, Zhou L, Yang B, Yin Z, Huang Y. Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics. Appl Surf Sci 2020;499:143910.

43. Tao X, Zhang K, Stuart BW, Assender HE. Elastic (acrylate/polydimethylsiloxane) substrate-to-coating interlayers for improving the mechanical resilience of thermoelectric films on poly(ethylene terephthalate) during roll-to-roll manufacture and in service operation. Surf Coat Tech 2022;434:128167.

44. Kwon D, Kim DM, Choi SM, et al. Effect of the orientation and bending stiffness of nanopatterned films on wrinkling. Macromol Res 2018;26:374-9.

45. Drack M, Graz I, Sekitani T, Someya T, Kaltenbrunner M, Bauer S. An imperceptible plastic electronic wrap. Adv Mater 2015;27:34-40.

46. Ohara A, Okumura K. Bending of polymer films: a method for obtaining a compressive modulus of thin films. Soft Matter 2024;20:8589-600.

47. Li YF, Chou SY, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater 2019;31:e1807516.

48. Kim MY, Kim HW, Oh C, Park SH, Kim BS. Stretchable oxide thin-film transistors with a mechanically and electrically reliable wavy structure for skin electronics. ACS Appl Electron Mater 2024;6:435-46.

49. Mishra S, Verma A. Variable density wrinkling in polymer thin film by gradient stress induced in the elastomeric substrate. Bull Mater Sci 2024;47:3156.

50. Zhang Q, Yin J. Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J Mech Phys Solids 2018;118:40-57.

51. Zhao Y, Fang F. Bio-inspired hierarchical wrinkles for tunable infrared reflectance. Surf Interfaces 2024;45:103832.

52. Yin D, Feng J, Ma R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat Commun 2016;7:11573.

53. Hartmann F, Jakešová M, Mao G, et al. Scalable microfabrication of folded parylene-based conductors for stretchable electronics. Adv Electron Mater 2021;7:2001236.

54. Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 2011;23:2946-50.

55. Yu Y, Fang Z, Luo Y, et al. Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale 2020;12:24259-65.

56. Seok S, Park H, Kim J. Analysis of experimental biaxial surface wrinkling pattern based on direct 3D numerical simulation. Micromachines 2024;15:543.

57. Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-inspired biodesign for applications in healthcare. Adv Mater 2022;34:e2109550.

58. Tao J, Khosravi H, Deshpande V, Li S. Engineering by cuts: how Kirigami principle enables unique mechanical properties and functionalities. Adv Sci 2022;10:e2204733.

59. Baldwin A, Meng E. Kirigami strain sensors microfabricated from thin-film parylene C. J Microelectromech Syst 2018;27:1082-8.

60. Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, Kawano T. Donut-shaped stretchable Kirigami: enabling electronics to integrate with the deformable muscle. Adv Healthc Mater 2019;8:e1900939.

61. Zhang S, Yang C, Qi Z, et al. Laser patterned graphene pressure sensor with adjustable sensitivity in an ultrawide response range. Nanotechnology 2024;35:365503.

62. Park R, Lee DH, Koh CS, et al. Laser-assisted structuring of graphene films with biocompatible liquid crystal polymer for skin/brain-interfaced electrodes. Adv Healthc Mater 2024;13:e2301753.

63. Biswas RK, Farid N, Bhatt BB, Gupta D, O’Connor GM, Scully P. Femtosecond infra-red laser carbonization and ablation of polyimide for fabrication of Kirigami inspired strain sensor. J Phys D Appl Phys 2023;56:085101.

64. Chen J, Shi Y, Ying B, et al. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Mater Horiz 2024;11:2010-20.

65. Lee HU, Park C, Jin J, Kim SW. A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO2/graphene/poly(3,4-ethylenedioxythiophene) nanocomposite electrode through pen lithography. J Power Sources 2020;453:227898.

66. Hwang DG, Bartlett MD. Tunable mechanical metamaterials through hybrid Kirigami structures. Sci Rep 2018;8:3378.

67. Guan YS, Zhang Z, Tang Y, Yin J, Ren S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv Mater 2018;30:e1706390.

68. Won P, Park JJ, Lee T, et al. Stretchable and transparent Kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett 2019;19:6087-96.

69. Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a Kirigami design. Nat Electron 2021;4:513-21.

70. Xu K, Lu Y, Honda S, Arie T, Akita S, Takei K. Highly stable Kirigami-structured stretchable strain sensors for perdurable wearable electronics. J Mater Chem C 2019;7:9609-17.

71. Sedal A, Memar AH, Liu T, Menguc Y, Corson N. Design of deployable soft robots through plastic deformation of Kirigami structures. IEEE Robot Autom Lett 2020;5:2272-9.

72. Zhang Z, Yu Y, Tang Y, et al. Kirigami-inspired stretchable conjugated electronics. Adv Electron Mater 2020;6:1900929.

73. An N, Domel AG, Zhou J, Rafsanjani A, Bertoldi K. Programmable hierarchical Kirigami. Adv Funct Mater 2020;30:1906711.

74. Khosravi H, Iannucci SM, Li S. Pneumatic soft actuators with Kirigami skins. Front Robot AI 2021;8:749051.

75. Rafsanjani A, Bertoldi K. Buckling-induced Kirigami. Phys Rev Lett 2017;118:084301.

76. Groeger D, Steimle J. LASEC: Instant fabrication of stretchable circuits using a laser cutter. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM; 2019. pp. 1-14.

77. Guo Z, Yu Y, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodyNET application. Adv Energy Mater 2022;12:2102993.

78. Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci Adv 2023;9:eadh1504.

79. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.

80. Zhang Z, Wang W, Jiang Y, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022;603:624-30.

81. Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun 2020;11:3362.

82. Dong Z, Ren X, Jia B, et al. Composite patch with negative Poisson’s ratio mimicking cardiac mechanical properties: design, experiment and simulation. Mater Today Bio 2024;26:101098.

83. Oh S, Lee S, Byun S, et al. 3D shape-morphing display enabled by electrothermally responsive, stiffness-tunable liquid metal platform with stretchable electroluminescent device. Adv Funct Mater 2023;33:2214766.

84. Liu G, Deng Y, Ni B, et al. Electroactive Bi-functional liquid crystal elastomer actuators. Small 2024;20:e2307565.

85. Cai M, Nie S, Du Y, Wang C, Song J. Soft elastomers with programmable stiffness as strain-isolating substrates for stretchable electronics. ACS Appl Mater Interfaces 2019;11:14340-6.

86. Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024;7:56.

87. Zhai F, Feng Y, Li Z, et al. 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter 2021;4:3313-26.

88. Zou W, Lin X, Terentjev EM. Amine-acrylate liquid single crystal elastomers reinforced by hydrogen bonding. Adv Mater 2021;33:e2101955.

89. Li S, Aizenberg M, Lerch MM, Aizenberg J. Programming deformations of 3D microstructures: opportunities enabled by magnetic alignment of liquid crystalline elastomers. Acc Mater Res 2023;4:1008-19.

90. Torres VM, LaNasa JA, Vogt BD, Hickey RJ. Controlling nanostructure and mechanical properties in triblock copolymer/monomer blends via reaction-induced phase transitions. Soft Matter 2021;17:1505-12.

91. Ye C, Singh G, Wadley ML, Karim A, Cavicchi KA, Vogt BD. Anisotropic mechanical properties of aligned polystyrene-block-polydimethylsiloxane thin films. Macromolecules 2013;46:8608-15.

92. Park WI, Kim K, Jang HI, et al. Directed self-assembly with sub-100 degrees Celsius processing temperature, sub-10 nanometer resolution, and sub-1 minute assembly time. Small 2012;8:3762-8.

93. Ditte K, Perez J, Chae S, et al. Ultrasoft and high-mobility block copolymers for skin-compatible electronics. Adv Mater 2021;33:e2005416.

94. Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent advances in 4D printing of liquid crystal elastomers. Adv Mater 2023;35:e2209566.

95. Xia Y, Lee E, Hu H, et al. Better actuation through chemistry: using surface coatings to create uniform director fields in nematic liquid crystal elastomers. ACS Appl Mater Interfaces 2016;8:12466-72.

96. Choi JC, Jeon J, Lee JW, et al. Steerable and agile light-fueled rolling locomotors by curvature-engineered torsional torque. Adv Sci 2023;10:e2304715.

97. Zhang W, Nan Y, Wu Z, Shen Y, Luo D. Photothermal-driven liquid crystal elastomers: materials, alignment and applications. Molecules 2022;27:4330.

98. Ahn C, Liang X, Cai S. Inhomogeneous stretch induced patterning of molecular orientation in liquid crystal elastomers. Extreme Mech Lett 2015;5:30-6.

99. Jeon J, Choi J, Lee H, et al. Continuous and programmable photomechanical jumping of polymer monoliths. Mater Today 2021;49:97-106.

100. Fowler HE, Rothemund P, Keplinger C, White TJ. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv Mater 2021;33:e2103806.

101. Yan S, Deng X, Chen S, et al. Deformation-induced photoprogrammable pattern of polyurethane elastomers based on Poisson effect. Adv Mater 2024;36:e2307445.

102. Nauman A, Choi J, Cho Y, Lee J, Na J, Kim H. Light-adaptable artificial iris with dynamically scalable pupil-aperture function by radially patterned photochromic transition control. Mater Design 2024;237:112515.

103. Park H, Kim M, Park H, Oh JH. Synthesis of a photo-crosslinkable elastomer for stretchable electronics and its use in strain-insensitive pressure sensors. Adv Funct Mater 2024;34:2312034.

104. Kang H, Hu X, Li M, et al. Novel biobased thermoplastic elastomer consisting of synthetic polyester elastomer and polylactide by in situ dynamical crosslinking method. RSC Adv 2015;5:23498-507.

105. Liu X, Wang Q, Zhou S, et al. Stiffness and interface engineered soft electronics with large-scale robust deformability. Adv Mater 2024;36:e2407886.

106. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:e2003155.

107. Yin L, Lv J, Wang J. Structural innovations in printed, flexible, and stretchable electronics. Adv Mater Technol 2020;5:2000694.

108. Wang Z, Luan C, Liao G, Liu J, Yao X, Fu J. Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv Eng Mater 2020;22:2000312.

109. Nauman A, Khaliq HS, Choi JC, Lee JW, Kim HR. Topologically engineered strain redistribution in elastomeric substrates for dually tunable anisotropic plasmomechanical responses. ACS Appl Mater Interfaces 2024;16:6337-47.

110. Gong X, Yang Q, Zhi C, Lee PS. Stretchable energy storage devices: from materials and structural design to device assembly. Adv Energy Mater 2021;11:2003308.

111. Matsuda R, Mizuguchi S, Nakamura F, et al. Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control. Sci Rep 2020;10:12666.

112. Paik S, Kim G, Chang S, et al. Near-field sub-diffraction photolithography with an elastomeric photomask. Nat Commun 2020;11:805.

113. Hwang W, Kim J, Park S, et al. A breathable and stretchable metastructure for a versatile hybrid electronic skin patch with long-term skin comfort. Adv Mater Technol 2023;8:2200477.

114. Lee Y, Lim S, Yi S, et al. Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson’s ratio overcome the gauge limit of a capacitive type strain sensor. Extreme Mech Lett 2019;31:100516.

115. Ha S, Kim J. Simple route to performance modulation of resistive strain sensor based on strain-engineered stretchable substrate with customized hard template. Compos Sci Technol 2022;217:109111.

116. Zhou X, Ren L, Song Z, et al. Advances in 3D/4D printing of mechanical metamaterials: from manufacturing to applications. Compos Part B Eng 2023;254:110585.

117. Pyo S, Park K. Mechanical metamaterials for sensor and actuator applications. Int J Pr Eng Man GT 2024;11:291-320.

118. Ling Y, Pang W, Liu J, et al. Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nat Commun 2022;13:524.

119. Wu Z, Zhang S, Vorobyev A, et al. Seamless modulus gradient structures for highly resilient, stretchable system integration. Mater Today Phys 2018;4:28-35.

120. Hong SY, Lee YH, Park H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 2016;28:930-5.

121. Keum K, Yang S, Kim KS, Park SK, Kim Y. Recent progress of stretchable displays: a comprehensive review of materials, device architectures, and applications. Soft Sci 2024;4:34.

122. Han K, Lee W, Kim Y, Kim J, Choi B, Park J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl Electron Mater 2021;3:5037-47.

123. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat Commun 2024;15:2814.

124. Shao Y, Yan J, Zhi Y, et al. A universal packaging substrate for mechanically stable assembly of stretchable electronics. Nat Commun 2024;15:6106.

125. Kim Y, Kim J, Kim CY, et al. A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chem Eng J 2022;431:134074.

126. Sun B, Li Z, Song Z, et al. Gradient modulus strategy for alleviating stretchable electronic strain concentration. Adv Funct Mater 2024:2410676.

127. Zou S, Li Y, Gong Z. Shape-deformable micro-LEDs for advanced displays and healthcare. Soft Sci 2024;4:19.

128. Niu J, Bai X, Wang J, et al. Fully flexible all-in-one electronic display skin with seamless integration of microLED and hydrogel battery. Adv Funct Mater 2024:2411916.

129. Xuan T, Shi S, Wang L, Kuo HC, Xie RJ. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J Phys Chem Lett 2020;11:5184-91.

130. Cinquino M, Prontera CT, Maggiore A, et al. Toward highly efficient solution-processable OLEDs: inkjet printing of TADF emissive layer. Adv Electron Mater 2024:2300358.

131. Hua Q, Shen G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem Soc Rev 2024;53:1316-53.

132. Zardetto V, Brown TM, Reale A, Di Carlo A. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B Polym Phys 2011;49:638-48.

133. Yin D, Jiang N, Chen Z, et al. Roller-assisted adhesion imprinting for high-throughput manufacturing of wearable and stretchable organic light-emitting devices. Adv Opt Mater 2020;8:1901525.

134. Wang Y, Cai Y, Zhang H, et al. Mechanical and thermal degradation behavior of high-performance PDMS elastomer based on epoxy/silicone hybrid network. Polymer 2021;236:124299.

135. Xie Z, Avila R, Huang Y, Rogers JA. Flexible and stretchable antennas for biointegrated electronics. Adv Mater 2020;32:e1902767.

136. Shih C, Lee W, Lu C, Wu H, Chen W. Enhancing the mechanical durability of an organic field effect transistor through a fluoroelastomer substrate with a crosslinking-induced self-wrinkled structure. Adv Electron Mater 2017;3:1600477.

137. Chen Z, Ji Z, Yin D, et al. Stretchable organic light-emitting devices with invisible orderly wrinkles by using a transfer-free technique. Adv Mater Technol 2022;7:2101263.

138. Oh JH, Park JW. Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays. ACS Appl Mater Interfaces 2023;15:33784-96.

139. Li XC, Yao L, Song W, et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs. Angew Chem Int Ed Engl 2023;62:e202213749.

140. Jeong S, Yoon H, Lee B, Lee S, Hong Y. Distortion-free stretchable light-emitting diodes via imperceptible microwrinkles. Adv Mater Technol 2020;5:2000231.

141. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017;11:5992-6003.

142. Yin D, Jiang NR, Liu YF, et al. Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light Sci Appl 2018;7:35.

143. Jang B, Won S, Kim J, et al. Auxetic meta-display: stretchable display without image distortion. Adv Funct Mater 2022;32:2113299.

144. Deng Y, Xu K, Jiao R, et al. Rotating square tessellations enabled stretchable and adaptive curved display. npj Flex Electron 2024;8:291.

145. Lee D, Kim SB, Kim T, et al. Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation. Nat Commun 2024;15:4349.

146. Ding Y, Xiong S, Sun L, et al. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024;53:7784-827.

147. Chun F, Zhang B, Gao Y, et al. Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat Photon 2024;18:856-63.

148. Oh H, Hur J, Jeong S, et al. Mechanically anisotropic stretchable and transparent composite substrates for distortion-free display. Compos Part A Appl S 2024;185:108338.

149. Choi JC, Jeong HY, Sun JH, et al. Bidirectional zero Poisson’s ratio elastomers with self-deformable soft mechanical metamaterials for stretchable displays. Adv Funct Mater 2024:2406725.

150. Lee Y, Jang B, Song H, et al. A seamless auxetic substrate with a negative Poisson’s ratio of -1. Nat Commun 2024;15:7146.

151. Kim T, Lee H, Jo W, Kim T, Yoo S. Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv Mater Technol 2020;5:2000494.

152. Han R, Li Y, Zhu Q, Niu K. Research on the preparation and thermal stability of silicone rubber composites: a review. Compos Part C Open 2022;8:100249.

153. Jung S, Kim J, Kang S. Distribution density-aware compensation for high-resolution stretchable display. IEEE Access 2022;10:72470-9.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/