REFERENCES
1. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 2018, 1, 30-9.
2. Ohshima, H. Mobile display technologies: past developments, present technologies, and future opportunities. Jpn. J. Appl. Phys. 2014, 53, 03CA01.
3. Hwang, T.; Yang, I.; Kwon, O.; et al. Inverters using only N-type indium gallium zinc oxide thin film transistors for flat panel display applications. Jpn. J. Appl. Phys. 2011, 50, 03CB06.
4. Chung, K.; Hong, M. P.; Kim, C. W.; Kang, I. Needs and solutions of future flat panel display for information technology industry. In: Digest. International Electron Devices Meeting; 2002 Dec 08-11; San Francisco, USA. IEEE; 2002. pp. 385-8.
5. Fukuda, K.; Someya, T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 2017, 29, 1602736.
6. Zhang, G.; Xu, Y.; Haider, M.; Sun, J.; Zhang, D.; Yang, J. Printing flexible thin-film transistors. Appl. Phys. Rev. 2023, 10, 031313.
7. Acharya, V.; Agarwal, K.; Mondal, S. Electronic materials for solution-processed TFTs. Mater. Res. Express. 2023, 10, 082002.
8. Park, J. W.; Kang, B. H.; Kim, H. J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 2020, 30, 1904632.
10. Cantarella, G.; Costa, J.; Meister, T.; et al. Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex. Print. Electron. 2020, 5, 033001.
11. Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 2012, 24, 2945-86.
12. Petti, L.; Münzenrieder, N.; Vogt, C.; et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303.
13. Kimura, M. Emerging applications using metal-oxide semiconductor thin-film devices. Jpn. J. Appl. Phys. 2019, 58, 090503.
14. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488-92.
15. Panca, A.; Panidi, J.; Faber, H.; Stathopoulos, S.; Anthopoulos, T. D.; Prodromakis, T. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 2023, 33, 2213762.
16. Park, J. S.; Maeng, W.; Kim, H.; Park, J. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin. Solid. Films. 2012, 520, 1679-93.
17. Heremans, P.; Tripathi, A. K.; de, J. M. A.; et al. Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 2016, 28, 4266-82.
18. Sanctis, S. Multinary metal oxide semiconductors - A study of different material systems and their application in thin-film transistors. 2020.
19. Bonnassieux, Y.; Brabec, C. J.; Cao, Y.; et al. The 2021 flexible and printed electronics roadmap. Flex. Print. Electron. 2021, 6, 023001.
20. Choi, M. K.; Yang, J.; Hyeon, T.; Kim, D. Flexible quantum dot light-emitting diodes for next-generation displays. npj. Flex. Electron. 2018, 2, 23.
21. Zhang, D.; Huang, T.; Duan, L. Emerging self-emissive technologies for flexible displays. Adv. Mater. 2020, 32, e1902391.
22. Jeon, Y.; Lee, D.; Yoo, H. Recent advances in metal-oxide thin-film transistors: flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 2022, 12, 204.
23. Jo, J. W.; Kang, S. H.; Heo, J. S.; Kim, Y. H.; Park, S. K. Flexible metal oxide semiconductor devices made by solution methods. Chemistry 2020, 26, 9126-56.
24. Kim, J.; Jo, C.; Kim, M. G.; et al. Vertically stacked full color quantum dots phototransistor arrays for high-resolution and enhanced color-selective imaging. Adv. Mater. 2022, 34, e2106215.
25. Jang, Y. W.; Kim, J.; Shin, J.; et al. Autonomous artificial olfactory sensor systems with homeostasis recovery via a seamless neuromorphic architecture. Adv. Mater. 2024, 36, e2400614.
26. Zhang, X.; Ju, E. C.; Lee, J. M.; Park, S. K.; Cho, S. W. Ultraviolet-sensitive and power-efficient oxide phototransistor enabled by nanometer-scale thickness engineering of InZnO semiconductor and gate bias modulation. Appl. Phys. Lett. 2023, 123, 261104.
27. Kang, S. H.; Jo, J. W.; Lee, J. M.; et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 2024, 15, 2814.
28. Jang, Y.; Kang, J.; Jo, J.; Kim, Y.; Kim, J.; Park, S. K. Improved dynamic responses of room-temperature operable field-effect-transistor gas sensors enabled by programmable multi-spectral ultraviolet illumination. Sensor. Actuat. B. Chem. 2021, 342, 130058.
29. Kim, J.; Kwon, S. M.; Kang, Y. K.; et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.
30. Kim, K.; Kang, S.; Kim, J.; Heo, J. S.; Kim, Y.; Park, S. K. An ultra-flexible solution-processed metal-oxide/carbon nanotube complementary circuit amplifier with highly reliable electrical and mechanical stability. Adv. Elect. Mater. 2020, 6, 1900845.
31. Jo, C.; Lee, S.; Kim, J.; Heo, J. S.; Kang, D. W.; Park, S. K. Enhanced electro-optical performance of inorganic perovskite/a-InGaZnO phototransistors enabled by Sn-Pb binary incorporation with a selective photonic deactivation. ACS. Appl. Mater. Interfaces. 2020, 12, 58038-48.
32. Kim, K.; Lee, K. W.; Kang, S.; et al. Stress-released amorphous oxide/carbon nanotube CMOS amplifier circuits for skin-compatible electronics. ACS. Appl. Electron. Mater. 2021, 3, 4950-8.
33. Kim, K. T.; Moon, S.; Kim, M.; et al. Highly scalable and robust mesa-island-structure metal-oxide thin-film transistors and integrated circuits enabled by stress-diffusive manipulation. Adv. Mater. 2020, 32, e2003276.
34. Kim, J.; Song, S.; Lee, J. M.; et al. Metal-oxide heterojunction optoelectronic synapse and multilevel memory devices enabled by broad spectral photocarrier modulation. Small 2023, 19, e2301186.
35. Papadopoulos, N.; Qiu, W.; Ameys, M.; et al. Touchscreen tags based on thin-film electronics for the Internet of Everything. Nat. Electron. 2019, 2, 606-11.
36. Biggs, J.; Myers, J.; Kufel, J.; et al. A natively flexible 32-bit Arm microprocessor. Nature 2021, 595, 532-6.
37. Ozer, E.; Kufel, J.; Myers, J.; et al. A hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate. Nat. Electron. 2020, 3, 419-25.
38. Jo, C.; Kim, J.; Kwak, J. Y.; et al. Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 2022, 34, e2108979.
39. Kwon, S. M.; Kwak, J. Y.; Song, S.; et al. Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits. Adv. Mater. 2021, 33, e2105017.
40. Kwon, S. M.; Kang, S.; Cho, S. S.; et al. Bidirectionally modulated synaptic plasticity with optically tunable ionic electrolyte transistors. ACS. Appl. Electron. Mater. 2022, 4, 2629-35.
41. Cho, S. W.; Jo, C.; Kim, Y. H.; Park, S. K. Progress of materials and devices for neuromorphic vision sensors. Nanomicro. Lett. 2022, 14, 203.
42. Cho, S. S.; Kim, J.; Jeong, S.; et al. Highly adaptive and energy efficient neuromorphic computation enabled by deep-spike heterostructure photonic neuro-transistors. Nano. Energy. 2022, 104, 107991.
43. Kang, C.; Lee, H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. J. Inform. Display. 2022, 23, 19-32.
44. Li, W.; Geng, D.; Yang, G.; Lu, N.; Li, L. Review of nanoscale oxide thin-film transistors for emerging display and memory applications. IEEE. Open. J. Immers. Disp. 2024, 1, 51-61.
45. Si, M.; Lin, Z.; Chen, Z.; Sun, X.; Wang, H.; Ye, P. D. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron. 2022, 5, 164-70.
46. Zhu, J.; Park, J. H.; Vitale, S. A.; et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 2023, 18, 456-63.
47. Zhang, J.; Wang, W.; Zhu, J.; et al. Ultra-flexible monolithic 3D complementary metal-oxide-semiconductor electronics. Adv. Funct. Mater. 2023, 33, 2305379.
48. Hua, Q.; Shen, G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev. 2024, 53, 1316-53.
49. Wang, X.; Qi, L.; Yang, H.; Rao, Y.; Chen, H. Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft. Sci. 2023, 3, 15.
50. Na, B. S.; Jung, S.; Moon, Y. G.; et al. InGaZnO-based stretchable ferroelectric memory transistor using patterned polyimide/polydimethylsiloxane hybrid substrate. J. Nanosci. Nanotechnol. 2016, 16, 10280-3.
51. Cantarella, G.; Costanza, V.; Ferrero, A.; et al. Design of engineered elastomeric substrate for stretchable active devices and sensors. Adv. Funct. Mater. 2018, 28, 1705132.
52. Park, K.; Lee, D.; Kim, B.; et al. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 2010, 20, 3577-82.
53. Kim, Y. H.; Lee, E.; Um, J. G.; Mativenga, M.; Jang, J. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics. Sci. Rep. 2016, 6, 25734.
54. Kim, J. O.; Hur, J. S.; Kim, D.; et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications. Adv. Funct. Mater. 2020, 30, 1906647.
55. Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 2014, 29, 1585-96.
56. Heo, J. S.; Jeon, S. P.; Kim, I.; Lee, W.; Kim, Y. H.; Park, S. K. Suppression of interfacial disorders in solution-processed metal oxide thin-film transistors by Mg doping. ACS. Appl. Mater. Interfaces. 2019, 11, 48054-61.
57. Jeon, S. P.; Heo, J. S.; Kim, I.; Kim, Y. H.; Park, S. K. Enhanced interfacial integrity of amorphous oxide thin-film transistors by elemental diffusion of ternary oxide semiconductors. ACS. Appl. Mater. Interfaces. 2020, 12, 57996-8004.
58. Li, H.; Qu, M.; Zhang, Q. Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors. IEEE. Electron. Device. Lett. 2013, 34, 1268-70.
59. Lee, J.; Choi, C. H.; Kim, T.; et al. Hydrogen-doping-enabled boosting of the carrier mobility and stability in amorphous IGZTO transistors. ACS. Appl. Mater. Interfaces. 2022, 14, 57016-27.
60. Banger, K. K.; Peterson, R. L.; Mori, K.; Yamashita, Y.; Leedham, T.; Sirringhaus, H. High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors. Chem. Mater. 2014, 26, 1195-203.
61. Lee, S.; Jeong, D.; Mativenga, M.; Jang, J. Highly robust bendable oxide thin-film transistors on polyimide substrates via mesh and strip patterning of device layers. Adv. Funct. Mater. 2017, 27, 1700437.
62. Lee, G. J.; Heo, S. J.; Lee, S.; et al. Stress release effect of micro-hole arrays for flexible electrodes and thin film transistors. ACS. Appl. Mater. Interfaces. 2020, 12, 19226-34.
63. Yuan, X.; Dou, W.; Gan, X.; et al. Junctionless electric-double-layer thin-film transistors with logic functions. Phys. Status. Solidi. RRL. 2023, 17, 2200480.
64. Jiang, J.; Sun, J.; Dou, W.; Wan, Q. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE. Electron. Device. Lett. 2012, 33, 65-7.
65. Zhou, J.; Wu, G.; Guo, L.; Zhu, L.; Wan, Q. Flexible transparent junctionless TFTs With oxygen-tuned indium-zinc-oxide channels. IEEE. Electron. Device. Lett. 2013, 34, 888-90.
66. Yuan, X.; Tan, Y.; Lei, L.; et al. Junctionless electric-double-layer TFTs on paper substrate. ECS. J. Solid. State. Sci. Technol. 2021, 10, 045004.
67. Lee, S.; Shin, J.; Jang, J. Top interface engineering of flexible oxide thin-film transistors by splitting active layer. Adv. Funct. Mater. 2017, 27, 1604921.
68. Nakata, M.; Takechi, K.; Eguchi, T.; Tokumitsu, E.; Yamaguchi, H.; Kaneko, S. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn. J. Appl. Phys. 2009, 48, 081608.
69. Zhang, J.; Liu, Y.; Guo, L.; et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J. Mater. Sci. Technol. 2015, 31, 171-4.
70. Cantarella, G.; Ishida, K.; Petti, L.; et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE. Electron. Device. Lett. 2016, 37, 1582-5.
71. Song, K.; Noh, J.; Jun, T.; Jung, Y.; Kang, H. Y.; Moon, J. Fully flexible solution-deposited zno thin-film transistors. Adv. Mater. 2010, 22, 4308-12.
72. Rim, Y. S.; Chen, H.; Liu, Y.; Bae, S. H.; Kim, H. J.; Yang, Y. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS. Nano. 2014, 8, 9680-6.
73. Bong, H.; Lee, W. H.; Lee, D. Y.; Kim, B. J.; Cho, J. H.; Cho, K. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl. Phys. Lett. 2010, 96, 192115.
74. Lim, W.; Jang, J. H.; Kim, S.; et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl. Phys. Lett. 2008, 93, 082102.
75. Han, D.; Chen, Z.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE. Trans. Electron. Devices. 2016, 63, 3360-3.
76. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc. Chem. Res. 2014, 47, 1019-28.
77. Smith, J. T.; Shah, S. S.; Goryll, M.; Stowell, J. R.; Allee, D. R. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE. Sensors. J. 2014, 14, 937-8.
78. Kim, S.; Park, M.; Yun, D.; Lee, W.; Kim, G.; Yoon, S. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly(ethylene naphthalate) substrate. IEEE. Trans. Electron. Devices. 2016, 63, 1557-64.
79. Kim, J.; Nam, T.; Lim, S. J.; et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl. Phys. Lett. 2011, 98, 142113.
80. Jin, S. H.; Kang, S. K.; Cho, I. T.; et al. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide. ACS. Appl. Mater. Interfaces. 2015, 7, 8268-74.
81. Cantarella, G.; Munzenrieder, N.; Petti, L.; et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE. Electron. Device. Lett. 2015, 36, 781-3.
82. Hsu, H.; Chiu, Y.; Chiou, P.; Cheng, C. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100°C. J. Alloys. Compd. 2015, 643, S133-6.
83. Oh, H.; Cho, K.; Park, S.; Kim, S. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron. Eng. 2016, 159, 179-83.
84. Kim, J.; Fuentes-hernandez, C.; Hwang, D.; Potscavage, J. W, Cheun H, Kippelen B. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org. Electron. 2011, 12, 45-50.
85. Jin, J.; Ko, J. H.; Yang, S.; Bae, B. S. Rollable transparent glass-fabric reinforced composite substrate for flexible devices. Adv. Mater. 2010, 22, 4510-5.
86. Lim, W.; Douglas, E. A.; Kim, S.; et al. High mobility InGaZnO4 thin-film transistors on paper. Appl. Phys. Lett. 2009, 94, 072103.
87. Martins, R.; Ferreira, I.; Fortunato, E. Electronics with and on paper. Phys. Status. Solidi. RRL. 2011, 5, 332-5.
88. Choi, N.; Khan, S. A.; Ma, X.; Hatalis, M. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem. Solid. State. Lett. 2011, 14, H247.
89. Wu, G. D.; Zhang, J.; Wan, X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chinese. Phys. Lett. 2014, 31, 108505.
90. Mahmoudabadi, F.; Ma, X.; Hatalis, M. K.; Shah, K. N.; Levendusky, T. L. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid. State. Electron. 2014, 101, 57-62.
91. Park, I.; Jeong, C.; Cho, I.; et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond. Sci. Technol. 2012, 27, 105019.
92. Tang, X.; Zhao, Y.; Li, K.; et al. In situ growth of (−201) fiber-textured β-Ga2O3 semiconductor tape for flexible thin-film transistor. Adv. Electron. Mater. 2024, 2400046.
93. Hosono, H. Transparent oxide semiconductors: fundamentals and recent progress. In: Facchetti A, Marks TJ, editors. Transparent electronics: from synthesis to applications. Wiley; 2010. pp. 31-59.
94. He, Y.; Wang, X.; Gao, Y.; Hou, Y.; Wan, Q. Oxide-based thin film transistors for flexible electronics. J. Semicond. 2018, 39, 011005.
95. Kim, H. J.; Park, K.; Kim, H. J. High-performance vacuum-processed metal oxide thin-film transistors: a review of recent developments. J. Soc. Info. Display. 2020, 28, 591-622.
96. Zhang, X.; Wang, B.; Huang, W.; et al. Synergistic boron doping of semiconductor and dielectric layers for high-performance metal oxide transistors: interplay of experiment and theory. J. Am. Chem. Soc. 2018, 140, 12501-10.
97. Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors. Appl. Phys. Lett. 2009, 95, 013502.
98. Bukke, R. N.; Mude, N. N.; Bae, J.; Jang, J. Nano-scale Ga2O3 interface engineering for high-performance of ZnO-based thin-film transistors. ACS. Appl. Mater. Interfaces. 2022, 14, 41508-19.
99. Tang, T.; Dacha, P.; Haase, K.; et al. Analysis of the annealing budget of metal oxide thin-film transistors prepared by an aqueous blade-coating process. Adv. Funct. Mater. 2023, 33, 2207966.
100. Lee, M.; Jo, J. W.; Kim, Y. J.; et al. Corrugated heterojunction metal-oxide thin-film transistors with high electron mobility via vertical interface manipulation. Adv. Mater. 2018, 30, e1804120.
101. Bhatti, G.; Agrawal, Y.; Palaparthy, V.; Kavicharan, M.; Agrawal, M. Flexible electronics: a critical review. In: Agrawal Y, Mummaneni K, Sathyakam PU, editors. Interconnect technologies for integrated circuits and flexible electronics. Singapore: Springer Nature; 2024. pp. 221-48.
102. Han, K.; Lee, W.; Kim, Y.; Kim, J.; Choi, B.; Park, J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS. Appl. Electron. Mater. 2021, 3, 5037-47.
103. Ribes, G.; Mitard, J.; Denais, M.; et al. Review on high-k dielectrics reliability issues. IEEE. Trans. Device. Mater. Relib. 2005, 5, 5-19.
104. Choi, J.; Mao, Y.; Chang, J. Development of hafnium based high-k materials - a review. Mat. Sci. Eng. R. 2011, 72, 97-136.
105. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690-754.
106. Huang, X.; Jiang, P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546-54.
107. Nadaud, N.; Lequeux, N.; Nanot, M.; Jové, J.; Roisnel, T. Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12. J. Solid. State. Chem. 1998, 135, 140-8.
108. Sun, X.; Han, J.; Xiao, Z.; et al. High performance indium-tin-zinc-oxide thin-film transistor with hexamethyldisilazane passivation. ACS. Appl. Electron. Mater. 2024, 6, 2442-8.
109. Kim, M. G.; Kim, H. S.; Ha, Y. G.; et al. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. J. Am. Chem. Soc. 2010, 132, 10352-64.
110. Ok, K. C.; Jeong, H. J.; Kim, H. S.; Park, J. S. Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50 cm2/Vs. IEEE. Electron. Device. Lett. 2015, 36, 38-40.
111. Tiwari, N.; Rajput, M.; John, R. A.; Kulkarni, M. R.; Nguyen, A. C.; Mathews, N. Indium tungsten oxide thin films for flexible high-performance transistors and neuromorphic electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 30506-13.
112. Chang, S.; Shih, S.; Lin, G. R. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. J. Nanomaterials. 2012, 2012, 127646.
113. Park, E.; Lee, H. M.; Kim, Y.; Jeong, H.; Park, J.; Park, J. Transparent flexible high mobility TFTs based on ZnON semiconductor with dual gate structure. IEEE. Electron. Device. Lett. 2020, 41, 401-4.
114. Bukke R, Naik Mude N, Mobaidul Islam M, Jang J. Improvement of metal-oxide films by post atmospheric Ar/O2 plasma treatment for thin film transistors with high mobility and excellent stability. Appl. Surf. Sci. 2021, 568, 150947.
115. Shi, Y.; Shiah, Y.; Sim, K.; Sasase, M.; Kim, J.; Hosono, H. High-performance a-ITZO TFTs with high bias stability enabled by self-aligned passivation using a-GaOx. Appl. Phys. Lett. 2022, 121, 212101.
116. Noh, J.; Kim, H.; Nahm, H.; et al. Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors. J. Appl. Phys. 2013, 113, 183706.
117. Ryu, M. K.; Yang, S.; Park, S. K.; Hwang, C.; Jeong, J. K. High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: combinatorial approach. Appl. Phys. Lett. 2009, 95, 072104.
118. Li, T.; Liu, X.; Ren, J.; et al. High-mobility InSnZnO thin film transistors via introducing water vapor sputtering gas. ACS. Appl. Mater. Interfaces. 2024, 16, 31237-46.
119. Ok, K. C.; Lim, J. H.; Jeong, H. J.; Lee, H. M.; Rim, Y. S.; Park, J. S. Photothermally activated nanocrystalline oxynitride with superior performance in flexible field-effect transistors. ACS. Appl. Mater. Interfaces. 2018, 10, 2709-15.
120. Takagi, A.; Nomura, K.; Ohta, H.; et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin. Solid. Films. 2005, 486, 38-41.
121. Lee, S.; Nathan, A.; Ye, Y.; Guo, Y.; Robertson, J. Localized tail states and electron mobility in amorphous ZnON thin film transistors. Sci. Rep. 2015, 5, 13467.
122. Kim, H. S.; Jeon, S. H.; Park, J. S.; et al. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors. Sci. Rep. 2013, 3, 1459.
123. Park, C.; Jeon, S.; Park, J. B.; et al. High-performance ITO/a-IGZO heterostructure TFTs enabled by thickness-dependent carrier concentration and band alignment manipulation. Ceram. Int. 2023, 49, 5905-14.
124. Jung, S. W.; Koo, J. B.; Park, C. W.; Na, B. S.; Oh, J. Y.; Lee, S. S. Fabrication of stretchable organic-inorganic hybrid thin-film transistors on polyimide stiff-island structures. J. Nanosci. Nanotechnol. 2015, 15, 7526-30.
125. Lin, Y. H.; Faber, H.; Labram, J. G.; et al. High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv Sci 2015;2:1500058.
126. Choi, I. M.; Kim, M. J.; On, N.; et al. Achieving high mobility and excellent stability in amorphous In–Ga–Zn–Sn–O thin-film transistors. IEEE. Trans. Electron. Devices. 2020, 67, 1014-20.
127. Chang, Y.; Bukke, R. N.; Bae, J.; Jang, J. Low-temperature solution-processed HfZrO gate insulator for high-performance of flexible LaZnO thin-film transistor. Nanomaterials 2023, 13, 2410.
128. Liu, X.; Wang, C.; Cai, B.; et al. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano. Lett. 2012, 12, 3596-601.
129. Divya, M.; Cherukupally, N.; Gogoi, S. K.; et al. Super flexible and high mobility inorganic/organic composite semiconductors for printed electronics on polymer substrates. Adv. Mater. Technol. 2023, 8, 2300256.
130. Kim, K. S.; Kim, M. S.; Chung, J.; Kim, D.; Lee, I. S.; Kim, H. J. Polyimide-doped indium-gallium-zinc oxide-based transparent and flexible phototransistor for visible light detection. ACS. Appl. Mater. Interfaces. 2022, 14, 21150-8.
131. Na, J. W.; Kim, H. J.; Hong, S.; Kim, H. J. Plasma polymerization enabled polymer/metal-oxide hybrid semiconductors for wearable electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 37207-15.
132. Lee, S.; Jeong, H.; Han, K.; Baek, G.; Park, J. An organic–inorganic hybrid semiconductor for flexible thin film transistors using molecular layer deposition. J. Mater. Chem. C. 2021, 9, 4322-9.
133. Zhu, L.; Gao, Y.; Li, X.; Sun, X.; Zhang, J. Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process. J. Mater. Res. 2014, 29, 1620-5.
134. Sheng, J.; Lee, H. J.; Oh, S.; Park, J. S. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS. Appl. Mater. Interfaces. 2016, 8, 33821-8.
135. Chen, X.; Zhang, G.; Wan, J.; et al. Transparent and flexible thin-film transistors with high performance prepared at ultralow temperatures by atomic layer deposition. Adv. Electron. Mater. 2019, 5, 1800583.
136. Sheng, J.; Hong, T.; Lee, H. M.; et al. Amorphous IGZO TFT with high mobility of ~70 cm2/(V s) via vertical dimension control using PEALD. ACS. Appl. Mater. Interfaces. 2019, 11, 40300-9.
137. Jo, J. W.; Kim, Y. H.; Park, J.; et al. Ultralow-temperature solution-processed aluminum oxide dielectrics via local structure control of nanoclusters. ACS. Appl. Mater. Interfaces. 2017, 9, 35114-24.
138. Hsu, H.; Chang, C.; Cheng, C. Room-temperature flexible thin film transistor with high mobility. Curr. Appl. Phys. 2013, 13, 1459-62.
139. Hsu, H.; Chang, C.; Cheng, C. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE. Electron. Device. Lett. 2013, 34, 768-70.
140. Jo, J. W.; Kim, K. H.; Kim, J.; Ban, S. G.; Kim, Y. H.; Park, S. K. High-mobility and hysteresis-free flexible oxide thin-film transistors and circuits by using bilayer sol-gel gate dielectrics. ACS. Appl. Mater. Interfaces. 2018, 10, 2679-87.
141. Yang, W.; Song, K.; Jung, Y.; Jeong, S.; Moon, J. Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. J. Mater. Chem. C. 2013, 1, 4275-82.
142. Xiao, P.; Dong, T.; Lan, L.; et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys. Status. Solidi. RRL. 2016, 10, 493-7.
143. Jo, J. W.; Kim, J.; Kim, K. T.; et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv. Mater. 2015, 27, 1182-8.
144. Kim, H.; Kim, T.; Kang, Y.; et al. Sub-volt metal-oxide thin-film transistors enabled by solution-processed high-k Gd-doped HfO2 dielectric films. Mat. Sci. Semicon. Proc. 2023, 166, 107746.
145. Kim, J.; Choi, S.; Jo, J.; Park, S. K.; Kim, Y. Solution-processed lanthanum-doped Al2O3 gate dielectrics for high-mobility metal-oxide thin-film transistors. Thin. Solid. Films. 2018, 660, 814-8.
146. Kim, J.; Kim, M.; Kang, Y.; et al. Photoactivated high-k lanthanum oxide-aluminum oxide (La2O3–Al2O3) alloy-type gate dielectrics for low-voltage-operating flexible transistors. J. Alloys. Compd. 2020, 842, 155671.
147. Zhu, Y.; Liu, G.; Xin, Z.; Fu, C.; Wan, Q.; Shan, F. Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS. Appl. Mater. Interfaces. 2020, 12, 1061-8.
148. Samanta, C.; Ghimire, R. R.; Ghosh, B. Fabrication of amorphous indium–gallium– zinc–oxide thin-film transistor on flexible substrate using a polymer electrolyte as gate dielectric. IEEE. Trans. Electron. Devices. 2018, 65, 2827-32.
149. Hur, J. S.; Kim, J. O.; Kim, H. A.; Jeong, J. K. Stretchable polymer gate dielectric by ultraviolet-assisted hafnium oxide doping at low temperature for high-performance indium gallium tin oxide transistors. ACS. Appl. Mater. Interfaces. 2019, 11, 21675-85.
150. Yu, M. C.; Ruan, D. B.; Liu, P. T.; et al. High performance transparent a-IGZO thin film transistors with ALD-HfO2 gate insulator on colorless polyimide substrate. IEEE. Trans. Nanotechnol. 2020, 19, 481-5.
151. Kim, C. Y.; Park, J. H.; Kim, T. G. Effect of photochemical hydrogen doping on the electrical properties of ZnO thin-film transistors. J. Alloys. Compd. 2018, 732, 300-5.
152. Fernandes, C.; Santa, A.; Santos, Â.; et al. A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors. Adv. Electron. Mater. 2018, 4, 1800032.
153. Abliz, A.; Wang, J.; Xu, L.; et al. Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer. Appl. Phys. Lett. 2016, 108, 213501.
154. Kang, Y.; Ahn, B. D.; Song, J. H.; et al. Hydrogen bistability as the origin of photo-bias-thermal instabilities in amorphous oxide semiconductors. Adv. Electron. Mater. 2015, 1, 1400006.
155. Wang, H.; He, J.; Xu, Y.; et al. Impact of hydrogen dopant incorporation on InGaZnO, ZnO and In2O3 thin film transistors. Phys. Chem. Chem. Phys. 2020, 22, 1591-7.
156. Kang, B. H.; Kim, W. G.; Chung, J.; Lee, J. H.; Kim, H. J. Simple hydrogen plasma doping process of amorphous indium gallium zinc oxide-based phototransistors for visible light detection. ACS. Appl. Mater. Interfaces. 2018, 10, 7223-30.
157. Abliz, A.; Gao, Q.; Wan, D.; et al. Effects of nitrogen and hydrogen codoping on the electrical performance and reliability of InGaZnO thin-film transistors. ACS. Appl. Mater. Interfaces. 2017, 9, 10798-804.
158. Liu, P.; Chang, C.; Fuh, C.; Liao, Y.; Sze, S. M. Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors. J. Display. Technol. 2016, 12, 1070-7.
159. Xie, H.; Wu, Q.; Xu, L.; Zhang, L.; Liu, G.; Dong, C. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers. Appl. Surf. Sci. 2016, 387, 237-43.
160. Ding, X.; Yang, J.; Qin, C.; Yang, X.; Ding, T.; Zhang, J. Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer deposition for high-performance ZnON transistors. IEEE. Trans. Electron. Devices. 2018, 65, 3283-90.
161. Kim, D. G.; Choi, H.; Kim, Y. S.; et al. Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability. ACS. Appl. Mater. Interfaces. 2023, 15, 31652-63.
162. Seo, J. S.; Jeon, J. H.; Hwang, Y. H.; et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 2013, 3, 2085.
163. Saha, J. K.; Ali, A.; Bukke, R. N.; Kim, Y. G.; Islam, M. M.; Jang, J. Performance improvement for spray-coated ZnO TFT by F doping with spray-coated Zr–Al–O gate insulator. IEEE. Trans. Electron. Devices. 2021, 68, 1063-9.
164. Yin, X.; Chen, Y.; Li, G.; et al. Analysis of low frequency noise in in situ fluorine-doped ZnSnO thin-film transistors. AIP. Advances. 2021, 11, 045326.
165. Ruan, D.; Liu, P.; Chiu, Y.; et al. Performance improvements of tungsten and zinc doped indium oxide thin film transistor by fluorine based double plasma treatment with a high-K gate dielectric. Thin. Solid. Films. 2018, 665, 117-22.
166. Yin, X.; Lin, D.; Zhong, W.; et al. In-situ fluorine-doped ZnSnO thin film and thin-film transistor. Solid. State. Electron. 2023, 208, 108726.
167. Qian, L. X.; Lai, P. T. Fluorinated InGaZnO thin-film transistor with HfLaO gate dielectric. IEEE. Electron. Device. Lett. 2014, 35, 363-5.
168. Miyakawa, M.; Nakata, M.; Tsuji, H.; Iino, H.; Fujisaki, Y. Impact of fluorine doping on solution-processed In–Ga–Zn–O thin-film transistors using an efficient aqueous route. AIP. Advances. 2020, 10, 065004.
169. Hanyu, Y.; Domen, K.; Nomura, K.; et al. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2013, 103, 202114.
170. Gaspar, D.; Pereira, L.; Gehrke, K.; Galler, B.; Fortunato, E.; Martins, R. High mobility hydrogenated zinc oxide thin films. Sol. Energy. Mat. Solar. C. 2017, 163, 255-62.
171. Tsao, S.; Chang, T.; Huang, S.; et al. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid. State. Electron. 2010, 54, 1497-9.
172. Kim, H. J.; Park, S. Y.; Jung, H. Y.; et al. Role of incorporated hydrogen on performance and photo-bias instability of indium gallium zinc oxide thin film transistors. J. Phys. D. Appl. Phys. 2013, 46, 055104.
173. Li, J.; Ju, S.; Tang, Y.; et al. Remarkable bias-stress stability of ultrathin atomic-layer-deposited indium oxide thin-film transistors enabled by plasma fluorination. Adv. Funct. Mater. 2024, 34, 2401170.
174. Kim, D.; Yoo, K. S.; Kim, H.; Park, J. Impact of N2O plasma reactant on PEALD-SiO2 insulator for remarkably reliable ALD-oxide semiconductor TFTs. IEEE. Trans. Electron. Devices. 2022, 69, 3199-205.
175. Raja, J.; Jang, K.; Balaji, N.; choi, W.; Thuy, T. T.; Yi, J. Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Appl. Phys. Lett. 2013, 102, 083505.
176. Han, Y.; Yan, H.; Tsai, Y.; Li, Y.; Zhang, Q.; Shieh, H. D. Influences of nitrogen doping on the electrical characteristics of indium-zinc-oxide thin film transistors. IEEE. Trans. Device. Mater. Relib. 2016, 16, 642-6.
177. Yu, X.; Zhou, N.; Smith, J.; et al. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. ACS. Appl. Mater. Interfaces. 2013, 5, 7983-8.
178. Song, J. H.; Kim, K. S.; Mo, Y. G.; Choi, R.; Jeong, J. K. Achieving high field-effect mobility exceeding 50 cm2/Vs in In-Zn-Sn-O thin-film transistors. IEEE. Electron. Device. Lett. 2014, 35, 853-5.
179. Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 2018, 8, 402.
180. Liu, J.; Buchholz, D. B.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv. Mater. 2010, 22, 2333-7.
181. Bao, Q.; Chen, C.; Wang, D.; Ji, Q.; Lei, T. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl. Surf. Sci. 2005, 252, 1538-44.
182. Ogugua, S. N.; Ntwaeaborwa, O. M.; Swart, H. C. Latest development on pulsed laser deposited thin films for advanced luminescence applications. Coatings 2020, 10, 1078.
183. Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today. 2014, 17, 236-46.
184. Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L. Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide. Appl. Phys. Lett. 2013, 103, 152102.
185. Wilson, S. K.; Hunt, R.; Duffy, B. R. The rate of spreading in spin coating. J. Fluid. Mech. 2000, 413, 65-88.
186. Habibi, M.; Rahimzadeh, A.; Bennouna, I.; Eslamian, M. Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating. Coatings 2017, 7, 42.
187. Goh, G. L.; Zhang, H.; Chong, T. H.; Yeong, W. Y. 3D printing of multilayered and multimaterial electronics: a review. Adv. Electron. Mater. 2021, 7, 2100445.
188. Huang, K.; Cai, X.; Shang, R.; et al. Printed high-adhesion flexible electrodes based on an interlocking structure for self-powered intelligent movement monitoring. ACS. Appl. Mater. Interfaces. 2023, 15, 58583-92.
189. Tan, H. W.; Choong, Y. Y. C.; Kuo, C. N.; Low, H. Y.; Chua, C. K. 3D printed electronics: processes, materials and future trends. Prog. Mater. Sci. 2022, 127, 100945.
190. Park, Y. G.; Yun, I.; Chung, W. G.; Park, W.; Lee, D. H.; Park, J. U. High-resolution 3D printing for electronics. Adv. Sci. 2022, 9, e2104623.
191. Kim, D. H.; Song, J.; Choi, W. M.; et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18675-80.
192. Rockett, A. Semiconductor alloys. In: The materials science of semiconductors. Springer; 2007. pp. 245-268.
193. Park, C. B.; Na, H.; Yoo, S. S.; Park, K. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron. Reliab. 2016, 59, 37-43.
194. Dou, W.; Tan, Y. Junctionless dual in-plane-gate thin-film transistors with AND logic function on paper substrates. ACS. Omega. 2019, 4, 21417-20.
195. Guo, J.; Liu, J.; Yang, B.; et al. Biodegradable junctionless transistors with extremely simple structure. IEEE. Electron. Device. Lett. 2015, 36, 908-10.
196. Baruah, R. K.; Paily, R. P. High-temperature effects on device performance of a junctionless transistor. In: 2012 International Conference on Emerging Electronics; 2012 Dec 15-17; Mumbai, India. IEEE; 2012. p. 1-4.
197. Jiang, J.; Sun, J.; Dou, W.; Zhou, B.; Wan, Q. Junctionless in-plane-gate transparent thin-film transistors. Appl. Phys. Lett. 2011, 99, 193502.
198. Jeon, S. P.; Jo, J. W.; Nam, D.; Kang, D. W.; Kim, Y. H.; Park, S. K. Junctionless structure indium-tin oxide thin-film transistors enabling enhanced mechanical and contact stability. ACS. Appl. Mater. Interfaces. 2024, 16, 38198-207.
199. Miyakawa, M.; Tsuji, H.; Nakata, M. Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications. J. Soc. Info. Display. 2022, 30, 699-705.
200. Nakata, M.; Motomura, G.; Nakajima, Y.; et al. Development of flexible displays using back-channel-etched In-Sn-Zn-O thin-film transistors and air-stable inverted organic light-emitting diodes: flexible displays using BCE-ITZO-TFTs and iOLEDs. Jnl. Soc. Info. Display. 2016, 24, 3-11.