REFERENCES
1. Mane PV, Rego RM, Yap PL, Losic D, Kurkuri MD. Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. Prog Mater Sci 2024;146:101314.
2. Yang Q, Xu Q, Jiang HL. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 2017;46:4774-808.
3. Uthappa UT, Sriram G, Arvind OR, et al. Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl Surf Sci 2020;528:146974.
4. Li D, Wu Y, Zhao J, Zhang J, Lu JY. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coordin Chem Rev 2014;261:1-27.
5. Chen Y, Li S, Pei X, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew Chem Int Ed Engl 2016;55:3419-23.
6. Wang B, Zhou X, Guo Z, Liu W. Recent advances in atmosphere water harvesting: design principle, materials, devices, and applications. Nano Today 2021;40:101283.
7. Ding Y, Maitra S, Halder S, et al. Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production. Matter 2022;5:2119-67.
8. Li R, Adarsh NN, Lu H, Wriedt M. Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter 2022;5:3161-93.
9. Sun J, Chan YT, Ho KWK, et al. “Slow walk” mimetic tensile loading maintains human meniscus tissue resident progenitor cells homeostasis in photocrosslinked gelatin hydrogel. Bioact Mater 2023;25:256-72.
10. Zhang J, Su C. Metal-organic gels: from discrete metallogelators to coordination polymers. Coordin Chem Rev 2013;257:1373-408.
11. Miao Q, Jiang L, Yang J, et al. MOF/hydrogel composite-based adsorbents for water treatment: a review. J Water Process Eng 2022;50:103348.
12. Tanaka S, Fuku K, Ikenaga N, Sharaf M, Nakagawa K. Recent progress and challenges in the field of metal–organic framework-based membranes for gas separation. Compounds 2024;4:141-71.
13. Lu Y, Wei M, Wang C, Wei W, Liu Y. Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids. Nanoscale 2020;12:4959-67.
14. Mohan B, Singh G, Gupta RK, et al. Hydrogen-bonded organic frameworks (HOFs): multifunctional material on analytical monitoring. TrAC Trend Anal Chem 2024;170:117436.
15. Park J, Jeon N, Lee S, Choe G, Lee E, Lee JY. Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem Eng J 2022;446:137344.
16. Zhao L, Yang Z, Wang J, et al. Boosting solar-powered interfacial water evaporation by architecting 3D interconnected polymetric network in CNT cellular structure. Chem Eng J 2023;451:138676.
18. Neves P, Gomes AC, Amarante TR, et al. Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based metal–organic framework and its application in catalytic olefin epoxidation. Micropor Mesopor Mat 2015;202:106-14.
19. Zhang W, Hu Y, Ge J, Jiang HL, Yu SH. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J Am Chem Soc 2014;136:16978-81.
20. Assi H, Mouchaham G, Steunou N, Devic T, Serre C. Titanium coordination compounds: from discrete metal complexes to metal-organic frameworks. Chem Soc Rev 2017;46:3431-52.
21. Lin Z, Richardson JJ, Zhou J, Caruso F. Direct synthesis of amorphous coordination polymers and metal-organic frameworks. Nat Rev Chem 2023;7:273-86.
22. Zhang CL, Zhou T, Li YQ, et al. Microenvironment modulation of metal-organic frameworks (MOFs) for coordination olefin oligomerization and (co)polymerization. Small 2023;19:e2205898.
23. Lin RB, Xiang S, Xing H, Zhou W, Chen B. Exploration of porous metal-organic frameworks for gas separation and purification. Coord Chem Rev 2019;378:87-103.
24. Ma K, Wasson MC, Wang X, et al. Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catal 2021;1:721-33.
25. Yao MS, Zheng JJ, Wu AQ, et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew Chem Int Ed Engl 2020;59:172-6.
26. Yang H, Bradley SJ, Chan A, et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J Am Chem Soc 2016;138:11872-81.
28. Luo R, Fu H, Li Y, et al. In situ fabrication of metal–organic framework thin films with enhanced pervaporation performance. Adv Funct Mater 2023;33:2213221.
29. Shao Z, Tang Y, Lv H, et al. High-performance solar-driven MOF AWH device with ultra-dense integrated modular design and reflux synthesis of Ni2Cl2(BTDD). Device 2023;1:100058.
30. Healy C, Patil KM, Wilson BH, et al. The thermal stability of metal-organic frameworks. Coordin Chem Rev 2020;419:213388.
31. Guo H, Feng Q, Xu K, et al. Self-templated conversion of metallogel into heterostructured TMP@carbon quasiaerogels boosting bifunctional electrocatalysis. Adv Funct Mater 2019;29:1903660.
32. Hu Y, Wang Y, Fang Z, et al. MOF supraparticles for atmosphere water harvesting at low humidity. J Mater Chem A 2022;10:15116-26.
33. Lenzen D, Bendix P, Reinsch H, et al. Scalable green synthesis and full-scale test of the metal-organic framework CAU-10-H for use in adsorption-driven chillers. Adv Mater 2018;30:1705869.
34. Feng Y, Wang R, Ge T. Full passive MOF water harvester in a real desert climate. Device 2023;1:100054.
35. Hu C, Bai Y, Hou M, et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci Adv 2020;6:eaax5785.
36. Fu H, Ou P, Zhu J, Song P, Yang J, Wu Y. Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Appl Nano Mater 2019;2:7626-36.
37. Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater Horiz 2021;8:1173-88.
38. Huang X, Wang L, Shen Z, et al. Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem Eng J 2022;446:137136.
40. Mao X, Wang L, Gu S, et al. Synthesis of a three-dimensional network sodium alginate–poly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+. Environ Chem Lett 2018;16:653-8.
41. Zhu B, Ma D, Wang J, Zhang S. Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydr Polym 2015;133:448-55.
42. Jongprasitkul H, Parihar VS, Turunen S, Kellomäki M. pH-responsive gallol-functionalized hyaluronic acid-based tissue adhesive hydrogels for injection and three-dimensional bioprinting. ACS Appl Mater Interfaces 2023;15:33972-84.
43. Hu K, He P, Zhao Z, et al. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Carbohydr Polym 2021;264:117995.
44. Feng L, Wang Y, Yuan S, et al. Porphyrinic metal–organic frameworks installed with Brønsted acid sites for efficient tandem semisynthesis of artemisinin. ACS Catal 2019;9:5111-8.
45. Logar NZ, Kaučič V. Nanoporous materials: from catalysis and hydrogen storage to wastewater treatment. Acta Chim Slov 2006;53:117-35. Available from: https://www.researchgate.net/profile/Natasa-Zabukovec-Logar/publication/228639201_Nanoporous_Materials_From_Catalysis_and_Hydrogen_Storage_to_Wastewater_Treatment/links/0046353ac2d2c6c818000000/Nanoporous-Materials-From-Catalysis-and-Hydrogen-Storage-to-Wastewater-Treatment.pdf. [Last accessed on 25 Oct 2024]
46. Li M, Ma C, Liu X, Su J, Cui X, He Y. Synthesis of a 2D phosphorus material in a MOF-based 2D nano-reactor. Chem Sci 2018;9:5912-8.
47. Huang H, Han L, Li J, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J Mater Chem A 2020;8:10291-300.
48. Zhu L, Qiu J, Sakai E. A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper. RSC Adv 2017;7:43755-63.
49. Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 2008;130:13850-1.
50. Chen W, Tao W. Precise control of the structure of synthetic hydrogel networks for precision medicine applications. Matter 2022;5:18-9.
51. Jin C, Shang H. Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: a review. J Solid State Chem 2021;297:122040.
52. Park J, Pramanick S, Park D, et al. Therapeutic-gas-responsive hydrogel. Adv Mater 2017;29:1702859.
54. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev 2020;120:7642-707.
55. Appel EA, Loh XJ, Jones ST, Dreiss CA, Scherman OA. Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials 2012;33:4646-52.
57. Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release 2020;326:150-63.
58. Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 2020;12:12010-7.
59. Peers S, Montembault A, Ladavière C. Chitosan hydrogels incorporating colloids for sustained drug delivery. Carbohydr Polym 2022;275:118689.
60. Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. Trend Chem 2021;3:1002-26.
61. Kim SH, Seo YB, Yeon YK, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 2020;260:120281.
62. Motealleh A, Kehr NS. Nanocomposite hydrogels and their applications in tissue engineering. Adv Healthc Mater 2017;6:1600938.
63. Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem Rev 2022;122:5604-40.
64. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021;15:12687-722.
65. Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater 2022;11:e2200494.
66. Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci 2023;3:10.
67. Lu Y, Liu C, Mei C, et al. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordin Chem Rev 2022;461:214496.
68. Shijina K, Illathvalappil R, Kurungot S, et al. Chitosan intercalated metal organic gel as a green precursor of Fe entrenched and Fe distributed N-doped mesoporous graphitic carbon for oxygen reduction reaction. ChemistrySelect 2017;2:8762-70.
69. Wang H, Cheng X, Yin F, Chen B, Fan T, He X. Metal-organic gel-derived Fe-Fe2O3@nitrogen-doped-carbon nanoparticles anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction. Electrochim Acta 2017;232:114-22.
70. Wang X, Yang Y, Wang R, Li L, Zhao X, Zhang W. Porous Ni3S2-Co9S8 carbon aerogels derived from carrageenan/NiCo-MOF hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn-air batteries. Langmuir 2022;38:7280-9.
71. Sikdar A, Majumdar A, Gogoi A, et al. Diffusion driven nanostructuring of metal–organic frameworks (MOFs) for graphene hydrogel based tunable heterostructures: highly active electrocatalysts for efficient water oxidation. J Mater Chem A 2021;9:7640-9.
72. Weng Y, Song Z, Chen C, Tan H. Hybrid hydrogel reactor with metal–organic framework for biomimetic cascade catalysis. Chem Eng J 2021;425:131482.
73. Duan C, Liu C, Meng X, et al. Facile synthesis of Ag NPs@MIL-100(Fe)/guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydr Polym 2020;230:115642.
74. Guo Y, Lu H, Zhao F, Zhou X, Shi W, Yu G. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv Mater 2020;32:e1907061.
75. Fu W, Chen J, Li C, et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer. J Colloid Interface Sci 2021;585:158-66.
76. Wang Y, Peng H, Wang H, Zhang M, Zhao W, Zhang Y. In-situ synthesis of MOF nanoparticles in double-network hydrogels for stretchable adsorption device. Chem Eng J 2022;450:138216.
77. Gao D, Liu Z, Cheng Z. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation. J Environ Chem Eng 2022;10:107904.
78. Biswas S, Haouas M, Freitas C, et al. Engineering of metal–organic frameworks/gelatin hydrogel composites mediated by the coacervation process for the capture of acetic acid. Chem Mater 2022;34:9760-74.
79. Luo Z, Chen H, Wu S, Yang C, Cheng J. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads. Chemosphere 2019;237:124493.
80. Chai Y, Zhang Y, Wang L, et al. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance. Sep Purif Technol 2022;295:121225.
81. Mao J, Ge M, Huang J, et al. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J Mater Chem A 2017;5:11873-81.
82. Chen Z, Zhang ZB, Zeng J, et al. Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange. Carbohydr Polym 2023;299:120079.
83. Zhu H, Zhang Q, Zhu S. Alginate hydrogel: a shapeable and versatile platform for in situ preparation of metal-organic framework-polymer composites. ACS Appl Mater Interfaces 2016;8:17395-401.
84. Bai Z, Liu Q, Zhang H, et al. Anti-biofouling and water-stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater. ACS Appl Mater Interfaces 2020;12:18012-22.
85. Song Y, Li H, Shan T, et al. MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr Polym 2023;302:120377.
86. Cui AQ, Wu XY, Ye JB, et al. “Two-in-one” dual-function luminescent MOF hydrogel for onsite ultra-sensitive detection and efficient enrichment of radioactive uranium in water. J Hazard Mater 2023;448:130864.
87. Zhang X, Li Z, Zhang T, Chen J, Ji W, Wei Y. Fabrication of an efficient ZIF-8 alginate composite hydrogel material and its application to enhanced copper(II) adsorption from aqueous solutions. New J Chem 2021;45:15876-86.
88. Mahmoud ME, Mohamed AK. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Int J Biol Macromol 2020;164:920-31.
89. Lian X, Yan B. Diagnosis of penicillin allergy: a MOFs-based composite hydrogel for detecting β-lactamase in serum. Chem Commun 2018;55:241-4.
90. Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Ln-MOF-based hydrogel films with tunable luminescence and afterglow behavior for visual detection of ofloxacin and anti-counterfeiting applications. Adv Mater 2024;36:e2311939.
91. Lian X, Zhang Y, Wang J, Yan B. Antineoplastic mitoxantrone monitor: a sandwiched mixed matrix membrane (MMM) based on a luminescent MOF-hydrogel hybrid. Inorg Chem 2020;59:10304-10.
92. Zhao L, Gan J, Xia T, et al. A luminescent metal–organic framework integrated hydrogel optical fibre as a photoluminescence sensing platform for fluorescence detection. J Mater Chem C 2019;7:897-904.
93. Jia W, Fan R, Zhang J, et al. Smart MOF-on-MOF hydrogel as a simple rod-shaped core for visual detection and effective removal of pesticides. Small 2022;18:e2201510.
94. Zhong N, Gao R, Shen Y, et al. Enzymes-encapsulated defective metal-organic framework hydrogel coupling with a smartphone for a portable glucose biosensor. Anal Chem 2022;94:14385-93.
95. Shen A, Hao X, Zhang L, et al. Solid-state degradation and visual detection of the nerve agent GB by SA@UiO-66-NH2@PAMAM hydrogel. Polym Chem 2022;13:6205-12.
96. Sun Y, Lv Y, Zhang Y, Wang Z. A stimuli-responsive colorimetric aptasensor based on the DNA hydrogel-coated MOF for fumonisin B1 determination in food samples. Food Chem 2023;403:134242.
97. Gwon K, Han I, Lee S, Kim Y, Lee DN. Novel metal-organic framework-based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl Mater Interfaces 2020;12:20234-42.
98. Deng Z, Li M, Hu Y, et al. Injectable biomimetic hydrogels encapsulating Gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem Eng J 2021;420:129668.
99. Han D, Li Y, Liu X, et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem Eng J 2020;396:125194.
100. Yao X, Zhu G, Zhu P, et al. Omniphobic ZIF-8@hydrogel membrane by microfluidic-emulsion-templating method for wound healing. Adv Funct Mater 2020;30:1909389.
101. Huang K, Liu W, Wei W, et al. Photothermal hydrogel encapsulating intelligently bacteria-capturing bio-MOF for infectious wound healing. ACS Nano 2022;16:19491-508.
102. Li Q, Liu K, Jiang T, et al. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. Mater Sci Eng C Mater Biol Appl 2021;131:112519.
103. Zhang W, Wang B, Xiang G, Jiang T, Zhao X. Photodynamic alginate Zn-MOF thermosensitive hydrogel for accelerated healing of infected wounds. ACS Appl Mater Interfaces 2023;15:22830-42.
104. Qiu L, Ouyang C, Zhang W, et al. Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J Nanobiotechnology 2023;21:163.
105. Xiao J, Chen S, Yi J, Zhang H, Ameer GA. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv Funct Mater 2017;27:1604872.
106. Yang L, Liang F, Zhang X, et al. Remodeling microenvironment based on MOFs-hydrogel hybrid system for improving diabetic wound healing. Chem Eng J 2022;427:131506.
107. Wang TL, Zhou ZF, Liu JF, et al. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J Nanobiotechnology 2021;19:275.
108. Wang X, Sun X, Bu T, et al. Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater 2021;135:342-55.
109. Nie W, Huang Y, Wang Y, et al. Temperature sensitive polyMOF hydrogel formed by in situ open-ring polymerization for infected chronic wound treatment. Chem Engi J 2022;446:136948.
110. Wu W, Liu J, Gong P, et al. Construction of core-shell nanoMOFs@microgel for aqueous lubrication and thermal-responsive drug release. Small 2022;18:e2202510.
111. Sun Y, Liu X, Zhu Y, et al. Tunable and controlled release of cobalt ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration. ACS Appl Mater Interfaces 2021;13:59051-66.
112. Kaur N, Mimansa, Sharma P, Praveen Kumar P, Neelakandan PP, Shanavas A. Plasmonically active supramolecular polymer–metal–organic framework hydrogel nanocomposite for localized chemo-photothermal therapy. ACS Appl Polym Mater 2023;5:542-51.
113. Li J, Fu Z, Liu Y. Encapsulation of liquid metal nanoparticles inside metal–organic frameworks for hydrogel-integrated dual functional biotherapy. Chem Eng J 2023;457:141302.
114. Zhang D, Meng Y, Song Y, Cui P, Hu Z, Zheng X. Precision therapy through breaking the intracellular redox balance with an MOF-based hydrogel intelligent nanobot for enhancing ferroptosis and activating immunotherapy. Nanoscale 2022;14:8441-53.
115. Shao G, Wang S, Zhao H, et al. Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydr Polym 2022;278:118915.
116. Yang Z, Fu X, Zhou L, et al. Chem-inspired synthesis of injectable metal–organic hydrogels for programmable drug carriers, hemostasis and synergistic cancer treatment. Chem Eng J 2021;423:130202.
117. Liu W, Erol O, Gracias DH. 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl Mater Interfaces 2020;12:33267-75.
118. Zhang J, He X, Kong YR, et al. Efficiently boosting moisture retention capacity of porous superprotonic conducting MOF-802 at ambient humidity via forming a hydrogel composite strategy. ACS Appl Mater Interfaces 2021;13:37231-8.
119. Cui B, Guo C, Zhang Z, Fu G. Construction of a novel self-bleaching photochromic hydrogel embraced within the Zn-MOF@WO3 junction for assembling UV-irradiated smart rewritable device. Chem Eng J 2023;455:140822.
120. Nie J, Xie H, Zhang M, Liang J, Nie S, Han W. Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr Polym 2020;250:116955.
121. Wang W, Zheng S, Hong Y, Xu X, Feng X, Song H. Hydrogel–metal–organic-framework nanoparticle composites for immobilization of active biomacromolecules. ACS Appl Nano Mater 2022;5:2222-30.
122. Tang L, Gong L, Xu Y, et al. Mechanically strong metal–organic framework nanoparticle-based double network hydrogels for fluorescence imaging. ACS Appl Nano Mater 2022;5:1348-55.
123. Kong Y, Zhang R, Zhang J, et al. Microwave-assisted rapid synthesis of nanoscale MOF-303 for hydrogel composites with superior proton conduction at ambient-humidity conditions. ACS Appl Energy Mater 2021;4:14681-8.
124. Lin X, Guo L, Shaghaleh H, Hamoud YA, Xu X, Liu H. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. Int J Biol Macromol 2021;191:483-91.
125. Xu J, Wu C, Qiu Y, Tang X, Zeng D. Novel elastically stretchable metal-organic framework laden hydrogel with pearl-net microstructure and freezing resistance through post-synthetic polymerization. Macromol Rapid Commun 2020;41:e1900573.
126. de Lima HHC, da Silva CTP, Kupfer VL, et al. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr Polym 2021;251:116977.
127. Jia P, He X, Yang J, et al. Dual–emission MOF–based ratiometric platform and sensory hydrogel for visible detection of biogenic amines in food spoilage. Sensor Actuat B Chem 2023;374:132803.
128. Kim B, Na J, Lim H, Kim Y, Kim J, Kim E. Robust high thermoelectric harvesting under a self-humidifying bilayer of metal organic framework and hydrogel layer. Adv Funct Mater 2019;29:1807549.
129. Khan M, Rahman TU, Shah LA, Akil HM, Fu J, Yoo HM. Multi-role conductive hydrogels for flexible transducers regulated by MOFs for monitoring human activities and electronic skin functions. J Mater Chem B 2024;12:6190-202.
130. Xiao J, Zhou Z, Zhong G, Xu T, Zhang X. Self-sterilizing microneedle sensing patches for machine learning-enabled wound pH visual monitoring. Adv Funct Mater 2024;34:2315067.
131. Wang HS, Wang YH, Ding Y. Development of biological metal-organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. Nanoscale Adv 2020;2:3788-97.
132. Ma Q, Zhang T, Wang B. Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 2022;5:1070-91.
133. Ying B, Huang H, Su Y, Howarth JG, Gu Z, Nan K. Theranostic gastrointestinal residence systems. Device 2023;1:100053.
134. Fan X, Chen Z, Sun H, Zeng S, Liu R, Tian Y. Polyelectrolyte-based conductive hydrogels: from theory to applications. Soft Sci 2022;2:10.