REFERENCES

1. Gómez-González M, Latorre E, Arroyo M, Trepat X. Measuring mechanical stress in living tissues. Nat Rev Phys 2020;2:300-17.

2. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 2020;5:351-70.

3. Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft wearable healthcare materials and devices. Adv Healthc Mater 2021;10:e2100577.

4. Chanda A, Singh G. Hyperelastic models for anisotropic tissue characterization. In: Mechanical properties of human tissues. Singapore: Springer Nature;2023. pp.73-83.

5. Yazdi SJM, Baqersad J. Mechanical modeling and characterization of human skin: a review. J Biomech 2022;130:110864.

6. Chen S, Sun L, Zhou X, et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat Commun 2020;11:1107.

7. Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36.

8. Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun 2021;12:4880.

9. Gogurla N, Kim Y, Cho S, Kim J, Kim S. Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications. Adv Mater 2021;33:e2008308.

10. Kim J, Park J, Park YG, et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat Biomed Eng 2021;5:772-82.

11. Silva F, Lira M. Intraocular pressure measurement: a review. Surv Ophthalmol 2022;67:1319-31.

12. Chen C, Cheng Y, Zhu X, et al. Ultrasound assessment of skin thickness and stiffness: the correlation with histology and clinical score in systemic sclerosis. Arthritis Res Ther 2020;22:197.

13. Villalobos Lizardi JC, Baranger J, Nguyen MB, et al. A guide for assessment of myocardial stiffness in health and disease. Nat Cardiovasc Res 2022;1:8-22.

14. Elouneg A, Chambert J, Lejeune A, Lucot Q, Jacquet E, Bordas SPA. Anisotropic mechanical characterization of human skin by in vivo multi-axial ring suction test. J Mech Behav Biomed Mater 2023;141:105779.

15. Pissarenko A, Meyers MA. The materials science of skin: analysis, characterization, and modeling. Prog Mater Sci 2020;110:100634.

16. Zhao Y, Feng B, Lee J, Lu N, Pierce DM. A multi-layered computational model for wrinkling of human skin predicts aging effects. J Mech Behav Biomed Mater 2020;103:103552.

17. Wells RG. Tissue mechanics and fibrosis. Biochim Biophys Acta 2013;1832:884-90.

18. Hu H, Ma Y, Gao X, et al. Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue. Nat Biomed Eng 2023;7:1321-34.

19. Sack I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat Rev Phys 2023;5:25-42.

20. Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018;2:687-95.

21. Hiscox LV, Schwarb H, McGarry MDJ, Johnson CL. Aging brain mechanics: progress and promise of magnetic resonance elastography. Neuroimage 2021;232:117889.

22. Zhao C, Park J, Root SE, Bao Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat Rev Bioeng 2024;2:671-90.

23. Feiner R, Dvir T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater 2018;3:17076.

24. Li J, Carlos C, Zhou H, et al. Stretchable piezoelectric biocrystal thin films. Nat Commun 2023;14:6562.

25. Sunwoo S, Han SI, Park CS, et al. Soft bioelectronics for the management of cardiovascular diseases. Nat Rev Bioeng 2024;2:8-24.

26. Dai Y, Hu H, Wang M, Xu J, Wang S. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron 2021;4:17-29.

27. Ryu H, Park Y, Luan H, et al. Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids. Adv Mater 2021;33:e2100026.

28. Yu X, Wang H, Ning X, et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng 2018;2:165-72.

29. Dagdeviren C, Shi Y, Joe P, et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat Mater 2015;14:728-36.

30. Kennedy KM, Chin L, McLaughlin RA, et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci Rep 2015;5:15538.

31. Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2016;2:e1600418.

32. Pirnat G, Marinčič M, Ravnik M, Humar M. Quantifying local stiffness and forces in soft biological tissues using droplet optical microcavities. Proc Natl Acad Sci U S A 2024;121:e2314884121.

33. Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci 2018;90:232-40.

34. Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci 2011;124:9-18.

35. Kuzum D, Takano H, Shim E, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 2014;5:5259.

36. Kim GH, Kim K, Nam H, et al. CNT-Au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sensor Actuat B Chem 2017;252:152-8.

37. Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat Biomed Eng 2017;1:0038.

38. Viventi J, Kim DH, Moss JD, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2010;2:24ra22.

39. Viventi J, Kim DH, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011;14:1599-605.

40. Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023;7:405-23.

41. Li W, Torres D, Díaz R, et al. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat Commun 2017;8:15310.

42. Turner BL, Senevirathne S, Kilgour K, et al. Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv Healthc Mater 2021;10:e2100986.

43. Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 2021;18:7-21.

44. Moin A, Zhou A, Rahimi A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat Electron 2021;4:54-63.

45. Lee K, Ni X, Lee JY, et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat Biomed Eng 2020;4:148-58.

46. Song H, Luo G, Ji Z, et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci Adv 2022;8:eabm3785.

47. Kim T, Shin Y, Kang K, et al. Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat Commun 2022;13:5815.

48. Lopez CAS. Advanced materials towards flexible printable bioelectronics, bioenergy devices and medical devices. 2021. Available from: https://www.proquest.com/openview/d150170f25f57f6a15d5c794a2ce5435/1?pq-origsite=gscholar&cbl=18750&diss=y. [Last accessed on 19 Oct 2024].

49. Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019;48:1566-95.

50. Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An emerging era: conformable ultrasound electronics. Adv Mater 2024;36:e2307664.

51. Lin M, Hu H, Zhou S, Xu S. Soft wearable devices for deep-tissue sensing. Nat Rev Mater 2022;7:850-69.

52. Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat Biomed Eng 2021;5:749-58.

53. Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985;11:625-41.

54. Nayeem MOG, Lee S, Jin H, et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc Natl Acad Sci U S A 2020;117:7063-70.

55. Cui Z, Wang W, Guo L, et al. Haptically quantifying Young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv Mater 2022;34:e2104078.

56. Fan X, Forsberg F, Smith AD, et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat Electron 2019;2:394-404.

57. Cai P, Hu B, Leow WR, et al. Biomechano-interactive materials and interfaces. Adv Mater 2018;30:e1800572.

58. Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5:149-65.

59. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.

60. Magder S. The meaning of blood pressure. Crit Care 2018;22:257.

61. Ma SP, Vunjak-Novakovic G. Tissue-engineering for the study of cardiac biomechanics. J Biomech Eng 2016;138:021010.

62. Macgowan CK, Henkelman RM, Wood ML. Pulse-wave velocity measured in one heartbeat using MR tagging. Magn Reson Med 2002;48:115-21.

63. Webb RC, Ma Y, Krishnan S, et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv 2015;1:e1500701.

64. Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron 2021;4:302-12.

65. Rothberg JM, Ralston TS, Rothberg AG, et al. Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence. Proc Natl Acad Sci U S A 2021;118:e2019339118.

66. Hu H, Hu C, Guo W, Zhu B, Wang S. Wearable ultrasound devices: an emerging era for biomedicine and clinical translation. Ultrasonics 2024;142:107401.

67. Pang DC, Chang CM. Development of a novel transparent flexible capacitive micromachined ultrasonic transducer. Sensors 2017;20:1443.

68. Zang J, Zhou C, Xiang M, et al. Optimum design and test of a novel bionic electronic stethoscope based on the cruciform microcantilever with leaf microelectromechanical systems structure. Adv Mater Technol 2022;7:2101501.

69. Nguyen TD, Deshmukh N, Nagarah JM, et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat Nanotechnol 2012;7:587-93.

70. Wang W, Jiang Y, Thomas PJ. Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: a review. Sensors 2021;21:1112.

71. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-63.

72. Joodaki H, Panzer MB. Skin mechanical properties and modeling: a review. Proc Inst Mech Eng H 2018;232:323-43.

73. Song E, Xie Z, Bai W, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat Biomed Eng 2021;5:759-71.

74. Hu H, Huang H, Li M, et al. A wearable cardiac ultrasound imager. Nature 2023;613:667-75.

75. Feigenbaum H. Role of M-mode technique in today’s echocardiography. J Am Soc Echocardiogr 2010;23:240-57.

76. Abramson A, Chan CT, Khan Y, et al. A flexible electronic strain sensor for the real-time monitoring of tumor regression. Sci Adv 2022;8:eabn6550.

77. Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med 2020;26:418-29.

78. MacKenzie IS. Human-computer interaction: an empirical research perspective. 2nd edition. 2024. Available from: https://shop.elsevier.com/books/human-computer-interaction/mackenzie/978-0-443-14096-9. [Last accessed on 19 Oct 2024].

79. Bakogiannis C, Stavropoulos K, Papadopoulos C, Papademetriou V. The impact of various blood pressure measurements on cardiovascular outcomes. Curr Vasc Pharmacol 2021;19:313-22.

80. Adegboro CO, Choudhury A, Asan O, Kelly MM. Artificial intelligence to improve health outcomes in the NICU and PICU: a systematic review. Hosp Pediatr 2022;12:93-110.

81. Lee JH, Cho K, Kim JK. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv Mater 2024;36:e2310505.

82. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/