REFERENCES

1. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004;428:911-8.

2. Zhang D, Huang T, Duan L. Emerging self-emissive technologies for flexible displays. Adv Mater 2020;32:e1902391.

3. Chang S, Cheng P, Li G, Yang Y. Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2018;2:1039-54.

4. Lee HE, Park JH, Kim TJ, et al. Novel electronics for flexible and neuromorphic computing. Adv Funct Mater 2018;28:1801690.

5. Kim BH, Staller CM, Cho SH, et al. High mobility in nanocrystal-based transparent conducting oxide thin films. ACS Nano 2018;12:3200-8.

6. van Hest MFAM, Dabney MS, Perkins JD, Ginley DS, Taylor MP. Titanium-doped indium oxide: a high-mobility transparent conductor. Appl Phys Lett 2005;87:032111.

7. Shi J, Zhang J, Yang L, Qu M, Qi DC, Zhang KHL. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv Mater 2021;33:e2006230.

8. Kawazoe H, Yanagi H, Ueda K, Hosono H. Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions. MRS Bull 2000;25:28-36.

9. Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H. Chemical design and thin film preparation of p-type conductive transparent oxides. J Electroceram 2000;4:407-14.

10. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997;389:939-42.

11. Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater 2016;28:3831-92.

12. Liu A, Zhu H, Kim MG, Kim J, Noh YY. Engineering copper iodide (CuI) for multifunctional p-type transparent semiconductors and conductors. Adv Sci 2021;8:2100546.

13. Zhang Z, Guo Y, Robertson J. Electronic structure of amorphous copper iodide: a p-type transparent semiconductor. Phys Rev Mater 2020;4:054603.

14. Willis J, Claes R, Zhou Q, et al. Limits to hole mobility and doping in copper iodide. Chem Mater 2023;35:8995-9006.

15. Grosskreutz JC. Mechanical properties of metal oxide films. J Electrochem Soc 1969;116:1232-7.

16. Kim MG, Kanatzidis MG, Facchetti A, Marks TJ. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 2011;10:382-8.

17. Yu X, Zeng L, Zhou N, et al. Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater 2015;27:2390-9.

18. Lee S, Kang D, Oh I. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 2017;111:248-57.

19. Yun J, Wang W, Bae TS, et al. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide. ACS Appl Mater Interfaces 2013;5:9933-41.

20. Le MN, Baeg K, Kim K, et al. Versatile solution-processed organic–inorganic hybrid superlattices for ultraflexible and transparent high-performance optoelectronic devices. Adv Funct Mater 2021;31:2103285.

21. Vidor FF, Meyers T, Wirth GI, Hilleringmann U. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng 2016;159:155-8.

22. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater 2012;22:2487-94.

23. Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nanomicro Lett 2022;14:206.

24. Liu X, Miao J, Liao L, Hu W. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C 2014;2:1201-8.

25. Jeong JW, Hwang HS, Choi D, Ma BC, Jung J, Chang M. Hybrid polymer/metal oxide thin films for high performance, flexible transistors. Micromachines 2020;11:264.

26. Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun 2015;6:6503.

27. Yang C, Souchay D, Kneiß M, et al. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat Commun 2017;8:16076.

28. Ahn K, Kim GH, Kim S, et al. Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide. Chem Mater 2022;34:10517-27.

29. Mishra D, Mokurala K, Kumar A, Seo SG, Jo HB, Jin SH. Light-mediated multi-level flexible copper iodide resistive random access memory for forming-free, ultra-low power data storage application. Adv Funct Mater 2023;33:2211022.

30. GrauŽinytė M, Botti S, Marques MAL, Goedecker S, Flores-Livas JA. Computational acceleration of prospective dopant discovery in cuprous iodide. Phys Chem Chem Phys 2019;21:18839-49.

31. Jung HS, Eun K, Kim YT, Lee EK, Choa S. Experimental and numerical investigation of flexibility of ITO electrode for application in flexible electronic devices. Microsyst Technol 2017;23:1961-70.

32. Chen D, Wang Y, Lin Z, et al. Growth strategy and physical properties of the high mobility p-type CuI crystal. Cryst Growth Des 2010;10:2057-60.

33. Sun W, Peng H, Li Y, et al. Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar cells. J Phys Chem C 2014;118:16806-12.

34. Son M, Kim GH, Song O, et al. Dopant control of solution-processed CuI:S for highly conductive p-type transparent electrode. Adv Sci 2024;11:e2308188.

35. Chen W, Deng L, Dai S, et al. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 2015;3:19353-9.

36. Kaushik DK, Selvaraj M, Ramu S, Subrahmanyam A. Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties. Sol Energy Mater Sol Cells 2017;165:52-8.

37. Storm P, Bar MS, Benndorf G, et al. High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition. APL Mater 2020;8:091115.

38. Yang C, Kneiβ M, Lorenz M, Grundmann M. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc Natl Acad Sci U S A 2016;113:12929-33.

39. Yamada N, Ino R, Ninomiya Y. Truly transparent p-type γ-CuI thin films with high hole mobility. Chem Mater 2016;28:4971-81.

40. Lee HA, Yatsu K, Kim TI, Kwon HI, Park IJ. Synthesis of vacancy-controlled copper iodide semiconductor for high-performance p-type thin-film transistors. ACS Appl Mater Interfaces 2022;14:56416-26.

41. Bädeker K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der Physik 1907;327:749-66.

42. Liu A, Zhu H, Park WT, et al. Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin-film transistors and complementary electronics. Adv Mater 2018;30:e1802379.

43. Das S, Choi J, Alford T. P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol Energy Mater Sol Cells 2015;133:255-9.

44. Choi CH, Gorecki JY, Fang Z, et al. Low-temperature, inkjet printed p-type copper(I) iodide thin film transistors. J Mater Chem C 2016;4:10309-14.

45. Lee K, Gyu Oh J, Kim D, et al. Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating complementary inverters: Improving stability with passivation layers. Appl Surf Sci 2023;608:155081.

46. Mirza AS, Pols M, Soltanpoor W, Tao S, Brocks G, Morales-masis M. The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductors. Matter 2023;6:4306-20.

47. Markwitz M, Murmu PP, Back SY, Mori T, Ruck BJ, Kennedy J. Effect of grain boundary scattering on carrier mobility and thermoelectric properties of tellurium incorporated copper iodide thin films. Surf Interfaces 2023;41:103190.

48. Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FC. Recent advances on pulsed laser deposition of large-scale thin films. Small Methods 2024;8:e2301282.

49. Geng F, Wu YN, Splith D, et al. Amorphous transparent Cu(S,I) thin films with very high hole conductivity. J Phys Chem Lett 2023;14:6163-9.

50. Keen DA, Hull S. The high-temperature structural behaviour of copper(I) iodide. J Phys Condens Matter 1995;7:5793-804.

51. Kaindl G, Nowik I, Frank KH. High-pressure phases of CuI studied by 129I-Mössbauer spectroscopy. Hyperfine Interact 1992;72:251-7.

52. Yu H, Cai X, Yang Y, Wang Z, Wei S. Band gap anomaly in cuprous halides. Comp Mater Sci 2022;203:111157.

53. Tanaka I, Kim D, Nakayama M, Nishimura H. Photoluminescence from heavy-hole and light-hole excitons split by thermal strain in CuI thin films. J Lumin 2000;87-9:257-9.

54. Wang J, Li J, Li SS. Native p-type transparent conductive CuI via intrinsic defects. J Appl Phys 2011;110:054907.

55. Jaschik S, Marques MRG, Seifert M, Rödl C, Botti S, Marques MAL. Stable ordered phases of cuprous iodide with complexes of copper vacancies. Chem Mater 2019;31:7877-82.

56. Darnige P, Thimont Y, Presmanes L, Barnabé A. Insights into stability, transport, and thermoelectric properties of transparent p-type copper iodide thin films. J Mater Chem C 2023;11:630-44.

57. Yamada N, Tanida Y, Murata H, Kondo T, Yoshida S. Wide-range-tunable p-type conductivity of transparent CuI1-xBrx alloy. Adv Funct Mater 2020;30:2003096.

58. Schein F, von Wenckstern H, Grundmann M. Transparent p-CuI/n-ZnO heterojunction diodes. Appl Phys Lett 2013;102:092109.

59. Yang C, Kneiß M, Schein FL, Lorenz M, Grundmann M. Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109. Sci Rep 2016;6:21937.

60. Zuo C, Cai S, Li Z, Fang X. A transparent, self-powered photodetector based on p-CuI/n-TiO2 heterojunction film with high on-off ratio. Nanotechnology 2021;33:105202.

61. Cha JH, Jung DY. Air-stable transparent silver iodide-copper iodide heterojunction diode. ACS Appl Mater Interfaces 2017;9:43807-13.

62. Kim T, Son C, Lee J, et al. Interfacial ZnS passivation for improvement of transparent ZnO/CuI diode characteristics. Appl Surf Sci 2021;536:147645.

63. Lee JH, Lee WJ, Kim TH, Lee T, Hong S, Kim KH. Transparent p-CuI/n-BaSnO3-δ heterojunctions with a high rectification ratio. J Phys Condens Matter 2017;29:384004.

64. Yamada N, Kondo Y, Ino R. Low-temperature fabrication and performance of polycrystalline CuI films as transparent p-type semiconductors. Phys Status Solidi A 2019;216:1700782.

65. Lee JH, Lee BH, Kang J, et al. Characteristics and electronic band alignment of a transparent p-CuI/n-SiZnSnO heterojunction diode with a high rectification ratio. Nanomaterials 2021;11:1237.

66. Grundmann M, Schein F, Lorenz M, Böntgen T, Lenzner J, von Wenckstern H. Cuprous iodide - a p-type transparent semiconductor: history and novel applications. Phys Status Solidi A 2013;210:1671-703.

67. Xiong C, Yao R. Low temperature preparation p-CuI/n-ZnO wide gap heterojunction diode. Optik 2015;126:1951-4.

68. Ayhan ME, Shinde M, Todankar B, et al. Ultraviolet radiation-induced photovoltaic action in γ-CuI/β-Ga2O3 heterojunction. Mater Lett 2020;262:127074.

69. Weiß A, Goldmann J, Kettunen S, et al. Conversion of ALD CuO thin films into transparent conductive p-type CuI thin films. Adv Mater Inter 2023;10:2201860.

70. Yang Z, Li M, Wang W, Gong J, Sun H, Sun H. Fabrication of transparent p-CuI/n-ZnO heterojunction with excellent ideality factor. J Phys D Appl Phys 2024;57:145301.

71. Fortunato E, Martins R. Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 2011;5:336-9.

72. Fortunato E, Barros R, Barquinha P, et al. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl Phys Lett 2010;97:052105.

73. Ogo Y, Hiramatsu H, Nomura K, et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett 2008;93:032113.

74. Ogo Y, Hiramatsu H, Nomura K, et al. Tin monoxide as an s-orbital-based p-type oxide semiconductor: electronic structures and TFT application. Phys Status Solidi 2009;206:2187-91.

75. Zhang KH, Xi K, Blamire MG, Egdell RG. P-type transparent conducting oxides. J Phys Condens Matter 2016;28:383002.

76. Klauk H, Gundlach DJ, Nichols JA, Jackson TN. Pentacene organic thin-film transistors for circuit and display applications. IEEE T Electron Dev 1999;46:1258-63.

77. Park JH, Kang CH, Kim YJ, Lee YS, Choi JS. Characteristics of pentacene-based thin-film transistors. Mater Sci Eng C 2004;24:27-9.

78. Zhou L, Park S, Bai B, et al. Pentacene TFT driven AM OLED displays. IEEE Electron Device Lett 2005;26:640-2.

79. Reig M, Puigdollers J, Velasco D. Molecular order of air-stable p-type organic thin-film transistors by tuning the extension of the π-conjugated core: the cases of indolo[3,2-b]carbazole and triindole semiconductors. J Mater Chem C 2015;3:506-13.

80. Liu A, Zhu H, Park WT, et al. High-performance p-channel transistors with transparent Zn doped-CuI. Nat Commun 2020;11:4309.

81. Li S, Liebe B, Son C, et al. Inkjet-printed p-type CuBrxI1-x: wearable thin-film transistors. Mater Adv 2022;3:7538-45.

82. Rajani K, Daniels S, Rahman M, Cowley A, Mcnally P. Deposition of earth-abundant p-type CuBr films with high hole conductivity and realization of p-CuBr/n-Si heterojunction solar cell. Mater Lett 2013;111:63-6.

83. Wei W, Gao M, Wang Z, et al. High-performance p-channel CuIBr thin-film transistor synthesized from solution in the atmosphere. Appl Phys Lett 2023;122:193301.

84. Wu H, Liang L, Wang X, et al. High-mobility flexible/transparent p-type copper iodide thin-film transistors and complementary inverters. Appl Surf Sci 2023;612:155795.

85. Lee H, Kim TI, Kwon H, Park I. Effects of solution processable CuI thin films with Al2O3-based sandwiched architecture for high-performance p-type transistor applications. J Mater Chem C 2024;12:6457-68.

86. Dai M, Xu W. Polarization mechanism and quasi-electric-double-layer modeling for indium-tin-oxide electric-double-layer thin-film-transistors. Appl Phys Lett 2012;100:113506.

87. Cho J, Lee J, He Y, Kim B, Lodge T, Frisbie C. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv Mater 2008;20:686-90.

88. Liang X, Luo Y, Pei Y, Wang M, Liu C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat Electron 2022;5:859-69.

89. Annadi A, Zhang N, Lim DBK, Gong H. Hole transport modulations in low dimensional γ-CuI films: implication for high figure of merit and thin film transistors. ACS Appl Electron Mater 2019;1:1029-37.

90. Liu A, Zhu H, Shim KI, et al. Key roles of trace oxygen treatment for high-performance Zn-doped CuI p-channel transistors. Adv Elect Mater 2021;7:2000933.

91. Wang M, Li H, Xin Q, et al. Performance enhancement of solution-processed p-type CuI TFTs by self-assembled monolayer treatment. Appl Surf Sci 2023;638:158075.

92. Huang Y, Tan J, Gao G, et al. Transparent p-type CuI film based self-powered ultraviolet photodetectors with ultrahigh speed, responsivity and detectivity. J Mater Chem C 2022;10:13040-6.

93. Tsay CY, Chen YC, Tsai HM, Sittimart P, Yoshitake T. The role of Zn substitution in improving the electrical properties of CuI thin films and optoelectronic performance of CuI MSM photodetectors. Materials 2022;15:8145.

94. Yamada N, Kondo Y, Cao X, Nakano Y. Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector based on CuI/In-Ga-Zn-O heterojunction. Appl Mater Today 2019;15:153-62.

95. Li S, Zhang Y, Yang W, Fang X. Solution-processed transparent Sn4+-doped CuI hybrid photodetectors with enhanced performances. Adv Mater Interfaces 2019;6:1900669.

96. Cao F, Jin L, Wu Y, Ji X. High-performance, self-powered UV photodetector based on Au nanoparticles decorated ZnO/CuI heterostructure. J Alloys Compd 2021;859:158383.

97. Cao F, Liu Y, Liu M, et al. Wide bandgap semiconductors for ultraviolet photodetectors: approaches, applications, and prospects. Research 2024;7:0385.

98. Burm J, Litvin KI, Woodard DW, et al. High-frequency, high-efficiency MSM photodetectors. IEEE J Quantum Electron 1995;31:1504-9.

99. Shyam A, Amal Kaitheri N, Raju R, Swaminathan R. Self-powered UV photodetectors based on heterojunctions composed of ZnO nanorods coated with thin films of ZnS and CuI. ACS Appl Nano Mater 2023;6:8529-39.

100. Madusanka H, Herath H, Fernando C. High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-visible photodetector. Sensor Actuat A Phys 2019;296:61-9.

101. Zhou Z, Zhao F, Wang C, et al. Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high quality CuI thin film. Opt Express 2022;30:29749-59.

102. Mahyavanshi RD, Desai P, Ranade A, Tanemura M, Kalita G. Observing charge transfer interaction in CuI and MoS2 heterojunction for photoresponsive device application. ACS Appl Electron Mater 2019;1:302-10.

103. Zhang Y, Li S, Yang W, Joshi MK, Fang X. Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J Phys Chem Lett 2019;10:2400-7.

104. Li Z, Zhang L, Wang J, et al. Hydrothermal growth and their optoelectronic device application of CuI nanostructure. Mater Res Express 2019;6:045048.

105. Niu S, Zhao F, Hang Y, et al. Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires. Opt Lett 2020;45:559-62.

106. Krishnaiah M, Kumar A, Mishra D, Kushwaha AK, Jin SH, Park JT. Solution-processed CuI films towards flexible visible-photodetectors: role of annealing temperature on Cu/I ratio and photodetective properties. J Alloy Compd 2021;887:161326.

107. Krishnaiah M, Kumar A, Kushwaha AK, Song J, Jin SH. Thickness dependent photodetection properties of solution-processed CuI films: towards cost-effective flexible visible photodetectors. Mater Lett 2021;305:130815.

108. Cao N, Zhang L, Li X, et al. Self-powered deep ultraviolet photodetector based on p-CuI/n-ZnGa2O4 heterojunction with high sensitivity and fast speed. Opt Express 2024;32:11573-82.

109. Storm P, Bar MS, Selle S, von Wenckstern H, Grundmann M, Lorenz M. p-Type doping and alloying of CuI thin films with selenium. Phys Status Solidi R 2021;15:2100214.

110. Matsuzaki K, Tsunoda N, Kumagai Y, et al. Hole-doping to a Cu(I)-based semiconductor with an isovalent cation: utilizing a complex defect as a shallow acceptor. J Am Chem Soc 2022;144:16572-8.

111. Raj V, Lu T, Lockrey M, et al. Introduction of TiO2 in CuI for its improved performance as a p-type transparent conductor. ACS Appl Mater Interfaces 2019;11:24254-63.

112. Xue R, Gao G, Yang L, Xu L, Zhang Y, Zhu J. High-performance p-type transparent conducting CuI-Cu2O thin films with enhanced hole mobility, surface, and stability. J Mater Chem C 2023;11:13681-90.

113. Inagaki S, Nakamura M, Aizawa N, et al. Molecular beam epitaxy of high-quality CuI thin films on a low temperature grown buffer layer. Appl Phys Lett 2020;116:192105.

114. Crovetto A, Hempel H, Rusu M, et al. Water adsorption enhances electrical conductivity in transparent p-type CuI. ACS Appl Mater Interfaces 2020;12:48741-7.

115. Lv Y, Xu Z, Ye L, Zhang Z, Su G, Zhuang X. Large γ-CuI semiconductor single crystal growth by a temperature reduction method from an NH4I aqueous solution. CrystEngComm 2015;17:862-7.

116. Peng W, Li L, Yu S, Yang P, Xu K, Luo W. High-performance flexible transparent p-CuI film by optimized solid iodization. Vacuum 2021;183:109862.

117. Lee HJ, Park M, Lee S, Kim B, Hong K. Solution-processed copper iodide film as a p-type electrical conductor and their applications. ACS Appl Electron Mater 2022;4:1232-7.

118. Cota-leal M, Cabrera-german D, Sotelo-lerma M, Martínez-gil M, García-valenzuela J. Highly-transparent and conductive CuI films obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS2 and subsequent iodination. Mat Sci Semicon Proc 2019;95:59-67.

119. Stralka T, Bar M, Schöppach F, et al. Grain and grain boundary conduction channels in copper iodide thin films. Phys Status Solidi A 2023;220:2200883.

120. Li ZH, He JX, Lv XH, et al. Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films. Nat Commun 2022;13:6346.

121. Zou S, Shen Y, Xie F, Chen J, Li Y, Tang J. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Mater Chem Front 2020;4:788-820.

122. Xu R, Li Y, Tang J. Recent advances in flexible organic light-emitting diodes. J Mater Chem C 2016;4:9116-42.

123. Shahnawaz S, Sudheendran Swayamprabha S, Nagar MR, et al. Hole-transporting materials for organic light-emitting diodes: an overview. J Mater Chem C 2019;7:7144-58.

124. Stakhira P, Cherpak V, Volynyuk D, et al. Characteristics of organic light emitting diodes with copper iodide as injection layer. Thin Solid Films 2010;518:7016-8.

125. Shan M, Jiang H, Guan Y, et al. Enhanced hole injection in organic light-emitting diodes utilizing a copper iodide-doped hole injection layer. RSC Adv 2017;7:13584-9.

126. Lee J, Leem D, Kim J. High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer. Organic Electronics 2008;9:805-8.

127. Hotra Z, Stakhira P, Cherpak V, et al. Effect of thickness of CuI hole injection layer on properties of organic light emitting diodes. Photonics Lett Pol 2012;4:35-7. Available from: https://photonics.pl/PLP/index.php/letters/article/view/4-13. [Last accessed on 13 Sep 2024]

128. Choudhury A, Nagar MR, The L, et al. Nanocrystalline copper iodide enabling high-efficiency organic LEDs. Org Electron 2022;111:106668.

129. Luo W, Zeng C, Du X, et al. Copper thiocyanate/copper iodide based hole transport composites with balanced properties for efficient polymer light-emitting diodes. J Mater Chem C 2018;6:4895-902.

130. Mohan V, Gautam AK, Choudhary SD, et al. Enhanced performance organic light emitting diode with CuI:CuPC composite hole transport layer. IEEE Trans Nanotechnol 2020;19:699-703.

131. Haider SZ, Anwar H, Wang M. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond Sci Technol 2018;33:035001.

132. Sun W, Ye S, Rao H, et al. Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 2016;8:15954-60.

133. Hu W, Dall’agnese C, Wang X, et al. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. J Photoch Photobio A 2018;357:36-40.

134. Haider SZ, Anwar H, Manzoor S, Ismail AG, Wang M. A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material. Curr Appl Phys 2020;20:1080-9.

135. Khadka DB, Shirai Y, Yanagida M, Miyano K. Ammoniated aqueous precursor ink processed copper iodide as hole transport layer for inverted planar perovskite solar cells. Sol Energy Mat Sol Cells 2020;210:110486.

136. Mahdy B, Isomura M, Kaneko T. Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution method for copper iodide as a hole transport layer. Jpn J Appl Phys 2023;62:SK1016.

137. Aliyaselvam OV, Arith F, Mustafa AN, Chelvanathan P, Azam MA, Amin N. Incorporation of green solvent for low thermal budget flower-like copper(I) iodide (γ-CuI) for high-efficiency solar cell. J Mater Sci Mater Electron 2023;34:10578.

138. Peng Y, Yaacobi-gross N, Perumal AK, et al. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers. Appl Phys Lett 2015;106:243302.

139. Khatun MM, Sunny A, Ahmed SRA. Numerical investigation on performance improvement of WS2 thin-film solar cell with copper iodide as hole transport layer. Sol Energy 2021;224:956-65.

140. Srivastava M, Alheity MA, Yahya MZA, Singh RC, Gültekin SS. Conduction mechanism and photo-electrochemical performance of copper iodide hole transport material-based perovskite solar cell. J Electron Mater 2023;52:4351-8.

141. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.

142. Coroa J, Morais Faustino BM, Marques A, et al. Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate. RSC Adv 2019;9:35384-91.

143. Feng R, Tang F, Zhang N, Wang X. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor. ACS Appl Mater Interfaces 2019;11:38616-24.

144. Mulla R, Rabinal MK. Defect-controlled copper iodide: a promising and ecofriendly thermoelectric material. Energy Technol 2018;6:1178-85.

145. Klochko N, Zhadan D, Klepikova K, et al. Semi-transparent copper iodide thin films on flexible substrates as p-type thermolegs for a wearable thermoelectric generator. Thin Solid Films 2019;683:34-41.

146. Murmu PP, Karthik V, Liu Z, et al. Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide. ACS Appl Energy Mater 2020;3:10037-44.

147. Murmu PP, Kennedy J, Liu Z, Mori T. The role of sulfur valency on thermoelectric properties of sulfur ion implanted copper iodide. J Alloy Compd 2022;921:166103.

148. Bae EJ, Kim J, Han M, Kang YH. Precision doping of iodine for highly conductive copper(I) iodide suitable for the spray-printable thermoelectric power generators. ACS Mater Lett 2023;5:2009-18.

149. Thimont Y, Darnige P, Barnabé A. Development, experimental and simulated performance of copper iodide (γ-CuI) uni-track thin film thermoelectric modules. Appl Surf Sci 2024;649:159071.

150. Vora-ud A, Chaarmart K, Kasemsin W, Boonkirdram S, Seetawan T. Transparent thermoelectric properties of copper iodide thin films. Physica B 2022;625:413527.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/