REFERENCES

1. Choi M, Park YJ, Sharma BK, Bae SR, Kim SY, Ahn JH. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci Adv 2018;4:eaas8721.

2. Hwangbo S, Hu L, Hoang AT, Choi JY, Ahn JH. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat Nanotechnol 2022;17:500-6.

3. Kim DC, Yun H, Kim J, et al. Three-dimensional foldable quantum dot light-emitting diodes. Nat Electron 2021;4:671-80.

4. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

5. Kim DY, Kim MJ, Sung G, Sun JY. Stretchable and reflective displays: materials, technologies and strategies. Nano Converg 2019;6:21.

6. Oh S, Lee S, Byun SH, et al. 3D shape-morphing display enabled by electrothermally responsive, stiffness-tunable liquid metal platform with stretchable electroluminescent device. Adv Funct Mater 2023;33:2214766.

7. Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2016;2:e1600418.

8. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.

9. Hong JH, Shin JM, Kim GM, et al. 9.1-inch stretchable AMOLED display based on LTPS technology. J Soc Info Display 2017;25:194-9.

10. Kim S, Shin JM, Hong JH, et al. 82-5: Late-news paper: three dimensionally stretchable AMOLED display for freeform displays. Symp Dig Tech Pap 2019;50:1194-7.

11. Hong JH, Kim S, Lee J, Yoon J, Kim S, Kim Y. 74-1: Invited paper: highly stretchable and shrinkable AMOLED for free deformation. Symp Dig Tech Pap 2023;54:1041-4.

12. Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 2018;28:1801834.

13. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.

14. Zhao Z, Liu K, Liu Y, Guo Y, Liu Y. Intrinsically flexible displays: key materials and devices. Natl Sci Rev 2022;9:nwac090.

15. Lee Y, Cho H, Yoon H, et al. Advancements in electronic materials and devices for stretchable displays. Adv Mater Technol 2023;8:2201067.

16. Kim DW, Kim SW, Lee G, et al. Fabrication of practical deformable displays: advances and challenges. Light Sci Appl 2023;12:61.

17. Zhou H, Kim KN, Sung MJ, Han SJ, Lee TW. Intrinsically stretchable low-dimensional conductors for wearable organic light-emitting diodes. Device 2023;1:100060.

18. Lee B, Cho H, Jeong S, et al. Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics. J Inf Disp 2022;23:163-84.

19. Hanif A, Yoo D, Kim D, Mustafayev F, Hajiyev S, Kim DS. Recent progress in strain-engineered stretchable constructs. Int J Precis Eng Manuf Green Tech 2024;11:1403-33.

20. Trung TQ, Lee NE. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 2017;29:1603167.

21. Yen YW, Kuo YL, Chen JY, Lee C, Lee CY. Investigation of thermal stability of Mo thin-films as the buffer layer and various Cu metallization as interconnection materials for thin film transistor-liquid crystal display applications. Thin Solid Films 2007;515:7209-16.

22. You B, Kim Y, Ju BK, Kim JW. Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl Mater Interfaces 2017;9:5486-94.

23. Zhao C, Zhou Y, Gu S, et al. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl Mater Interfaces 2020;12:47902-10.

24. Cai L, Zhang S, Zhang Y, et al. Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications. Adv Mater Technol 2018;3:1700232.

25. Jeong W, Lee S, Choi H, et al. Washable, stretchable, and reusable core-shell metal nanowire network-based electronics on a breathable polymer nanomesh substrate. Mater Today 2022;61:30-9.

26. Lin Y, Li Q, Ding C, et al. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res 2022;15:4590-8.

27. Tran P, Tran NH, Lee JH. Highly stretchable electroluminescent device based on copper nanowires electrode. Sci Rep 2022;12:8967.

28. Lee W, Kim H, Kang I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 2022;378:637-41.

29. Li X, Lin Y, Cui L, et al. Stretchable and lithography-compatible interconnects enabled by self-assembled nanofilms with interlocking interfaces. ACS Appl Mater Interfaces 2023;15:56233-41.

30. Park J, Myung JS, Cho D, et al. Internally structured conductive composite for reliable stretchable electronics. Adv Elect Mater 2023;9:2201021.

31. Song S, Hong H, Kim KY, et al. Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 2023;17:21443-54.

32. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 2021;20:533-40.

33. Wang T, Liu Q, Liu H, Xu B, Xu H. Printable and highly stretchable viscoelastic conductors with kinematically reconstructed conductive pathways. Adv Mater 2022;34:e2202418.

34. Kim MS, Kim S, Choi J, et al. Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control. ACS Appl Mater Interfaces 2022;14:1826-37.

35. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater 2021;20:851-8.

36. Lopes PA, Fernandes DF, Silva AF, et al. Bi-phasic Ag-in-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics. ACS Appl Mater Interfaces 2021;13:14552-61.

37. Park C, Kim J, Lee H, et al. Biaxially stretchable active-matrix micro-LED display with liquid metal interconnects. Adv Mater Technol 2023;9:2301413.

38. Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces 2016;8:15459-65.

39. Kraft U, Molina-lopez F, Son D, Bao Z, Murmann B. Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv Elect Mater 2020;6:1900681.

40. Wang Z, Liu X, Shen X, et al. An ultralight graphene honeycomb sandwich for stretchable light-emitting displays. Adv Funct Mater 2018;28:1707043.

41. Bang J, Ahn J, Zhang J, et al. Stretchable and directly patternable double-layer structure electrodes with complete coverage. ACS Nano 2022;16:12134-44.

42. Lee G, Kim H, Lee J, et al. Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics. Mater Today 2023;67:84-94.

43. Shin H, Sharma BK, Lee SW, et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl Mater Interfaces 2019;11:14222-8.

44. Zhou H, Han SJ, Harit AK, et al. Graphene-based intrinsically stretchable 2d-contact electrodes for highly efficient organic light-emitting diodes. Adv Mater 2022;34:e2203040.

45. Kim DW, Kwon J, Kim HS, Jeong U. Printed stretchable single-nanofiber interconnections for individually-addressable highly-integrated transparent stretchable field effect transistor array. Nano Lett 2021;21:5819-27.

46. Zhang C, Khan A, Cai J, et al. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film. ACS Appl Mater Interfaces 2018;10:21009-17.

47. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.

48. Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 2015;27:1480-511.

49. Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 2012;22:421-8.

50. Kang S, Lee BY, Lee SH, Lee SD. High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization. Sci Rep 2019;9:13066.

51. Gong X, Chu Z, Li G, et al. Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol Rapid Commun 2023;44:e2200795.

52. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv Funct Mater 2018;28:1804197.

53. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater 2022;34:e2101339.

54. Kwon C, Seong D, Ha J, et al. Self-bondable and stretchable conductive composite fibers with spatially controlled percolated ag nanoparticle networks: novel integration strategy for wearable electronics. Adv Funct Mater 2020;30:2005447.

55. Lee Y, Kim BJ, Hu L, Hong J, Ahn JH. Morphable 3D structure for stretchable display. Mater Today 2022;53:51-7.

56. Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS Appl Mater Interfaces 2022;14:4344-51.

57. Lee D, Kim SB, Kim T, et al. Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation. Nat Commun 2024;15:4349.

58. Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 2018;1:30-9.

59. Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent advances in high-mobility and high-stretchability organic field-effect transistors: from materials, devices to applications. Small Methods 2021;5:e2100676.

60. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018;555:83-8.

61. Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun 2020;11:3362.

62. Liu D, Mun J, Chen G, et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J Am Chem Soc 2021;143:11679-89.

63. Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52.

64. Mun J, Ochiai Y, Wang W, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun 2021;12:3572.

65. Ren H, Zhang J, Tong Y, et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl Electron Mater 2021;3:1458-67.

66. Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun 2021;12:5701.

67. Liu D, Lei Y, Ji X, et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design based on asymmetric benzodithiophene building blocks. Adv Funct Mater 2022;32:2203527.

68. Pei D, An C, Zhao B, et al. Polyurethane-based stretchable semiconductor nanofilms with high intrinsic recovery similar to conventional elastomers. ACS Appl Mater Interfaces 2022;14:33806-16.

69. Liu K, Wang C, Liu B, et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv Mater 2023;35:e2207006.

70. Zheng Y, Michalek L, Liu Q, et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat Nanotechnol 2023;18:1175-84.

71. Kim JS, Jeong MW, Nam TU, et al. Intrinsically stretchable subthreshold organic transistors for highly sensitive low-power skin-like active-matrix temperature sensors. Adv Funct Mater 2024;34:2305252.

72. Park CW, Koo JB, Hwang C, Park H, Im SG, Lee S. Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal interconnects. Appl Phys Express 2018;11:126501.

73. Kim JO, Hur JS, Kim D, et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications. Adv Funct Mater 2020;30:1906647.

74. Han K, Lee W, Kim Y, Kim J, Choi B, Park J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl Electron Mater 2021;3:5037-47.

75. Li E, Rao Z, Wang X, et al. Direct fabrication of stretchable electronics on a programmable stiffness substrate with 100% strain isolation. IEEE Electron Device Lett 2021;42:1484-7.

76. Kim Y, Kim J, Kim CY, et al. A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chem Eng J 2022;431:134074.

77. Lee W, Park J. Fatigue effect of stretchable a-InGaZnO TFT on PI/PDMS substrate under repetitive Uni/biaxial elongation stress. ACS Appl Electron Mater 2022;4:6004-12.

78. Miyakawa M, Tsuji H, Nakata M. Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications. J Soc Inf Disp 2022;30:699-705.

79. Oh H, Oh JY, Park CW, Pi JE, Yang JH, Hwang CS. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat Commun 2022;13:4963.

80. Song X, Zhang T, Wu L, et al. Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv Sci 2022;9:e2105623.

81. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat Commun 2024;15:2814.

82. Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. Nanoscale 2020;12:23546-55.

83. Fan L, Wang Q, Huang Q, et al. Stretchable carbon nanotube thin-film transistor arrays realized by a universal transferable-band-aid method. IEEE Trans Electron Devices 2021;68:5879-85.

84. Nishio Y, Hirotani J, Kishimoto S, Kataura H, Ohno Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube integrated circuits with local strain suppression layer. Adv Elect Mater 2021;7:2000674.

85. Zhang W, Liu Y, Pei X, et al. Stretchable MoS2 artificial photoreceptors for E-Skin. Adv Funct Mater 2022;32:2107524.

86. Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron 2023;6:137-45.

87. Li Y, Li N, Liu W, et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun 2023;14:4488.

88. Mai Y, Cotterell B. On the essential work of ductile fracture in polymers. Int J Fract 1986;32:105-25.

89. Xia Z, Hutchinson JW. Crack patterns in thin films. J Mech Phys Solids 2000;48:1107-31.

90. Alkhadra MA, Root SE, Hilby KM, Rodriquez D, Sugiyama F, Lipomi DJ. Quantifying the fracture behavior of brittle and ductile thin films of semiconducting polymers. Chem Mater 2017;29:10139-49.

91. Kim SW, Park S, Lee S, et al. Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates. Adv Funct Mater 2021;31:2010870.

92. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 2012;24:2945-86.

93. Park B, Nam S, Kang Y, et al. Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors. Mater Today Electron 2024;8:100090.

94. Chae SH, Yu WJ, Bae JJ, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 2013;12:403-9.

95. Cai L, Wang C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res Lett 2015;10:1013.

96. Dai Y, Hu H, Wang M, Xu J, Wang S. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron 2021;4:17-29.

97. Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci Adv 2023;9:eadh1504.

98. Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 2021;7:eabd9715.

99. Jeon K, Park J. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules 2022;55:8311-20.

100. Li XC, Yao L, Song W, et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs. Angew Chem Int Ed Engl 2023;62:e202213749.

101. Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater 2023;22:737-45.

102. Oh JH, Park JW. Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays. ACS Appl Mater Interfaces 2023;15:33784-96.

103. Xie P, Mao J, Luo Y. Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. J Mater Chem C 2019;7:484-9.

104. Zhou Y, Zhao C, Wang J, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater Lett 2019;1:511-8.

105. Tan YJ, Godaba H, Chen G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat Mater 2020;19:182-8.

106. Xuan HD, Timothy B, Park HY, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels. Adv Mater 2021;33:e2008849.

107. Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl Mater Interfaces 2021;13:59243-51.

108. Zhao C, Yang B, Ali MU, et al. Bright stretchable white alternating-current electroluminescent devices enabled by photoluminescent phosphor. Adv Mater Technol 2022;7:2101440.

109. Zhu Y, Xia Y, Wu M, Guo W, Jia C, Wang X. Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 2022;98:107309.

110. Go Y, Park H, Zhu Y, et al. Optically transparent and mechanically robust ionic hydrogel electrodes for bright electroluminescent devices achieving high stretchability over 1400%. Adv Funct Mater 2023;33:2215193.

111. von Szczepanski J, Wolf J, Hu W, et al. High-permittivity polysiloxanes for bright, stretchable electroluminescent devices. Adv Opt Mater 2024;12:2400132.

112. Bade SGR, Shan X, Hoang PT, et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater 2017;29:1607053.

113. Lin CC, Jiang DH, Kuo CC, et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl Mater Interfaces 2018;10:2210-5.

114. Ercan E, Tsai PC, Chen JY, et al. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl Mater Interfaces 2019;11:23605-15.

115. Lee SY, Jeon S, Ahn J, et al. Highly stretchable white-light electroluminescent devices with gel-type silica-coated all-inorganic perovskite. Appl Surf Sci 2021;563:150229.

116. Jeong SM, Song S, Kim H, Baek S, Kwak JS. Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer. RSC Adv 2017;7:8816-22.

117. Le TH, Choi Y, Kim S, et al. Highly elastic and >200% reversibly stretchable down-conversion white light-emitting diodes based on quantum dot gel emitters. Adv Opt Mater 2020;8:1901972.

118. Lee Y, Kim DS, Jin SW, et al. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem Eng J 2022;427:130858.

119. Kim DC, Seung H, Yoo J, et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat Electron 2024;7:365-74.

120. Tien H, Huang Y, Chiu Y, Cheng Y, Chueh C, Lee W. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. J Mater Chem C 2021;9:2660-84.

121. Ding Z, Liu D, Zhao K, Han Y. Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films. Macromolecules 2021;54:3907-26.

122. Lucchetta DE, Di Donato A, Francescangeli O, Riminesi C, Singh G, Castagna R. Flexible, stretchable, tunable, and switchable DFB Laser. Photonics 2023;10:12.

123. Hao S, Yang C, Yang X, et al. Highly tough, stretchable, and recyclable ionogels with crosslink-enhanced emission characteristics for anti-counterfeiting and motion detection. ACS Appl Mater Interfaces 2023;15:16132-43.

124. Choi MK, Yang J, Hyeon T, Kim D. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex Electron 2018;2:23.

125. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017;11:5992-6003.

126. Li YF, Chou SY, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater 2019;31:e1807516.

127. Kim T, Lee H, Jo W, Kim T, Yoo S. Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv Mater Technol 2020;5:2000494.

128. Lim MS, Nam M, Choi S, et al. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett 2020;20:1526-35.

129. Hsiang E, Yang Z, Yang Q, Lan Y, Wu S. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J Soc Inf Disp 2021;29:446-65.

130. Meng W, Xu F, Yu Z, et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat Nanotechnol 2021;16:1231-6.

131. Ma F, Lin Y, Yuan W, et al. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display. ACS Appl Electron Mater 2021;3:1747-57.

132. Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interfaces 2021;13:11260-7.

133. Lee H, Chun YT. Fibertronic quantum-dot light-emitting diode for e-textile. ACS Appl Nano Mater 2020;3:11060-9.

134. Song YJ, Kim JW, Cho HE, et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 2020;14:1133-40.

135. Choi S, Jo W, Jeon Y, et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flex Electron 2020;4:96.

136. Song H, Song YJ, Hong J, et al. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. npj Flex Electron 2022;6:199.

137. Jang B, Won S, Kim J, et al. Auxetic meta-display: stretchable display without image distortion. Adv Funct Mater 2022;32:2113299.

138. Jiang S, Liu J, Xiong W, et al. A snakeskin-inspired, soft-hinge kirigami metamaterial for self-adaptive conformal electronic armor. Adv Mater 2022;34:e2204091.

139. Hwang W, Kim J, Park S, et al. A breathable and stretchable metastructure for a versatile hybrid electronic skin patch with long-term skin comfort. Adv Mater Technol 2023;8:2200477.

140. Deng Y, Xu K, Jiao R, et al. Rotating square tessellations enabled stretchable and adaptive curved display. npj Flex Electron 2024;8:291.

141. Heo JS, Eom J, Kim YH, Park SK. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 2018;14:1703034.

142. Yun MJ, Sim YH, Lee DY, Cha SI. Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Sci Rep 2021;11:4038.

143. Choi JC, Jeong HY, Sun JH, et al. Bidirectional zero poisson’s ratio elastomers with self-deformable soft mechanical metamaterials for stretchable displays. Adv Funct Mater 2024:2406725.

144. Yoo J, Ha S, Lee GH, Kim Y, Choi MK. Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv Funct Mater 2023;33:2302473.

145. Yang B, Zhao Y, Ali MU, et al. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv Mater 2022;34:e2201342.

146. Kwon JH, Kim YM, Moon HC. Porous ion gel: a versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output. ACS Nano 2021;15:15132-41.

147. Nobeshima T, Nakakomi M, Nakamura K, Kobayashi N. Alternating-current-driven, color-tunable electrochemiluminescent cells. Adv Opt Mater 2013;1:144-9.

148. Shin S, Park YS, Cho S, et al. Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions. Chem Sci 2018;9:2480-8.

149. Moon HC, Lodge TP, Frisbie CD. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J Am Chem Soc 2014;136:3705-12.

150. Kim SH, Baek GW, Yoon J, et al. A bioinspired stretchable sensory-neuromorphic system. Adv Mater 2021;33:e2104690.

151. Zhang P, Lei IM, Chen G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat Commun 2022;13:4775.

152. Zhao J, Lo LW, Wan H, Mao P, Yu Z, Wang C. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv Mater 2021;33:e2102095.

153. Wang D, Hauptmann J, May C, Hofstetter YJ, Vaynzof Y, Müller T. Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flex Print Electron 2021;6:035001.

154. Wang C, Linghu C, Nie S, et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci Adv 2020;6:eabb2393.

155. Luo H, Wang C, Linghu C, Yu K, Wang C, Song J. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. Natl Sci Rev 2020;7:296-304.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/