REFERENCES

1. Cai G, Wang J, Lee PS. Next-generation multifunctional electrochromic devices. Acc Chem Res 2016;49:1469-76.

2. Kim DY, Kim MJ, Sung G, Sun JY. Stretchable and reflective displays: materials, technologies and strategies. Nano Converg 2019;6:21.

3. Rogers JA. Electronics. Toward paperlike displays. Science 2001;291:1502-3.

4. Manda R, Pagidi S, Lim YJ, et al. Self-supported liquid crystal film for flexible display and photonic applications. J Mol Liq 2019;291:111314.

5. Lee HE, Shin JH, Park JH, et al. Micro light-emitting diodes for display and flexible biomedical applications. Adv Funct Mater 2019;29:1808075.

6. Kim S, Kwon HJ, Lee S, et al. Low-power flexible organic light-emitting diode display device. Adv Mater 2011;23:3511-6.

7. Choi MK, Yang J, Hyeon T, Kim D. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex Electron 2018;2:23.

8. Sun J, Sapkota A, Park H, et al. Fully R2R-printed carbon-nanotube-based limitless length of flexible active-matrix for electrophoretic display application. Adv Electron Mater 2020;6:1901431.

9. Park CB, Kim KM, Lee JE, Na H, Yoo SS, Yang MS. Flexible electrophoretic display driven by solution-processed organic TFT with highly stable bending feature. Org Electron 2014;15:3538-45.

10. Li H, Li R, Jiang H, Fang X, Yin X, Zhou R. Fabrication and evaluation of flexible electrowetting display with support pillars. Nanoscale Adv 2020;2:4077-84.

11. Peng CY, Hsu CW, Li CW, et al. Flexible photonic crystal material for multiple anticounterfeiting applications. ACS Appl Mater Interfaces 2018;10:9858-64.

12. Fang H, Zhao Z, Wu W, Wang H. Progress in flexible electrochromic devices. J Inorg Mater 2021;36:140-51.

13. Wu W, Fang H, Ma H, Wu L, Wang Q, Wang H. Self-powered rewritable electrochromic display based on WO3-x film with mechanochemically synthesized MoO3-y nanosheets. ACS Appl Mater Interfaces 2021;13:20326-35.

14. Beaujuge PM, Reynolds JR. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev 2010;110:268-320.

15. Singh J, Srivastava S, Shrivas S, Pandey R, Dubey A. Comparative study of structures of electrochromic device for flexible electrochromic display. In: 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT); 2023 Mar 17-18; Dehradun, India. IEEE; 2023. pp. 290-5.

16. Wu W, Wu L, Ma H, Wu L, Wang H, Fang H. Electrochromic devices constructed with water-in-salt electrolyte enabling energy-saving and prolonged optical memory effect. Chem Eng J 2022;446:137122.

17. Eh AL, Tan AWM, Cheng X, Magdassi S, Lee PS. Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol 2018;6:33-45.

18. Zhou L, Wei P, Fang H, Wu W, Wu L, Wang H. Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J Mater Chem C 2020;8:13999-4006.

19. Qian C, Wang P, Guo X, Jiang C, Liu P. High-contrast energy-efficient flexible electrochromic devices based on viologen derivatives and their application in smart windows and electrochromic displayers. Sol Energy Mat Sol C 2024;266:112669.

20. Sun P, Chen J, Li Y, et al. Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat 2023;5:e12363.

21. Xue W, Zhang Y, Liu F, Dou Y, Yan M, Wang W. Self-powered flexible multicolor electrochromic devices for information displays. Research 2023;6:0227.

22. Chen BH, Kao SY, Hu CW, Higuchi M, Ho KC, Liao YC. Printed multicolor high-contrast electrochromic devices. ACS Appl Mater Interfaces 2015;7:25069-76.

23. Yu Z, Li Y, Xia F, Xue W. The characteristics of indium tin oxide films prepared on various buffer layer-coated polymer substrates. Surf Coat Tech 2009;204:131-4.

24. Ersman P, Lassnig R, Strandberg J, Dyreklev P. Flexible active matrix addressed displays manufactured by screen printing. Adv Eng Mater 2021;23:2000771.

25. Andersson Ersman P, Zabihipour M, Tu D, et al. Monolithic integration of display driver circuits and displays manufactured by screen printing. Flex Print Electron 2020;5:024001.

26. Lv X, Xu H, Yang Y, et al. Flexible laterally-configured electrochromic supercapacitor with feasible patterned display. Chem Eng J 2023;458:141453.

27. Nair NM, Khanra I, Ray D, Swaminathan P. Silver nanowire-based printable electrothermochromic ink for flexible touch-display applications. ACS Appl Mater Interfaces 2021;13:34550-60.

28. Kim DS, Lee H, Keum K, et al. A stretchable patch of multi-color electrochromic devices for driving integrated sensors and displaying bio-signals. Nano Energy 2023;113:108607.

29. Zhao SQ, Liu YH, Ming Z, et al. Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels. Opt Express 2019;27:29547-57.

30. Layani M, Darmawan P, Foo WL, et al. Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale 2014;6:4572-6.

31. Huang L, Chen X, Wu X, et al. Hybrid Ag/Ni mesh/PH 1000 transparent electrodes for high performance flexible electrochromic devices with exceptional stability. Flex Print Electron 2023;8:025021.

32. Kim KW, Lee SB, Kim SH, Moon HC. Spray-coated transparent hybrid electrodes for high-performance electrochromic devices on plastic. Org Electron 2018;62:151-6.

33. Wang JL, Lu YR, Li HH, Liu JW, Yu SH. Large area co-assembly of nanowires for flexible transparent smart windows. J Am Chem Soc 2017;139:9921-6.

34. Jensen J, Hösel M, Kim I, Yu J, Jo J, Krebs FC. Fast switching ITO free electrochromic devices. Adv Funct Mater 2014;24:1228-33.

35. Xue R, Liu Y, Ning L, et al. Fabrication of flexible electrochromic devices with degradable and fully recyclable features. ACS Biomater Sci Eng 2022;8:1320-8.

36. Huang Y, Liao S, Ren J, Khalid B, Peng H, Wu H. A transparent, conducting tape for flexible electronics. Nano Res 2016;9:917-24.

37. Kim D, Kim J, Ko Y, Shim K, Kim JH, You J. A facile approach for constructing conductive polymer patterns for application in electrochromic devices and flexible microelectrodes. ACS Appl Mater Interfaces 2016;8:33175-82.

38. Gao X, Wang Y, Wu M, Zhi C, Meng J, Zhang L. Multicolor electrochromic fabric with a simple structure of PEDOT:PSS/DMSO. Dyes Pigments 2023;219:111642.

39. Wang C, Jiang X, Cui P, et al. Multicolor and multistage response electrochromic color-memory wearable smart textile and flexible display. ACS Appl Mater Interfaces 2021;13:12313-21.

40. Dubey A, Tao X, Cochrane C, Koncar V. Textile based three-layer robust flexible and stable electrochromic display. IEEE Access 2020;8:182918-29.

41. Zhou Y, Fang J, Wang H, et al. Multicolor electrochromic fibers with helix-patterned electrodes. Adv Electron Mater 2018;4:1800104.

42. Zhu T, Xiong J, Chen J, et al. Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Res 2023;16:5473-9.

43. Chen X, Lin H, Deng J, et al. Electrochromic fiber-shaped supercapacitors. Adv Mater 2014;26:8126-32.

44. Kang W, Lin MF, Chen J, Lee PS. Highly transparent conducting nanopaper for solid state foldable electrochromic devices. Small 2016;12:6370-7.

45. Sinha S, Daniels R, Yassin O, et al. Electrochromic fabric displays from a robust, open-air fabrication technique. Adv Mater Technol 2022;7:2100548.

46. Li K, Zhang Q, Wang H, Li Y. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Appl Mater Interfaces 2014;6:13043-50.

47. Fan H, Li K, Liu X, et al. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl Mater Interfaces 2020;12:28451-60.

48. Chou HH, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun 2015;6:8011.

49. Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat Electron 2022;5:694-705.

50. Kim Y, Park C, Im S, Kim JH. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices. Sci Rep 2020;10:16488.

51. Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52.

52. Cai G, Park S, Cheng X, Eh AL, Lee PS. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Sci Technol Adv Mat 2018;19:759-70.

53. Wu W, Poh WC, Lv J, et al. Self-powered and light-adaptable stretchable electrochromic display. Adv Energy Mater 2023;13:2204103.

54. Yan C, Kang W, Wang J, et al. Stretchable and wearable electrochromic devices. ACS Nano 2014;8:316-22.

55. Liu Q, Xu Z, Qiu W, et al. Ultraflexible, stretchable and fast-switching electrochromic devices with enhanced cycling stability. RSC Adv 2018;8:18690-7.

56. Wu W, Fang H, Ma H, Wu L, Zhang W, Wang H. Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nanomicro Lett 2020;13:20.

57. Kim DS, Lee YH, Kim JW, Lee H, Jung G, Ha JS. A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals. Chem Eng J 2022;429:132289.

58. Ding Y, Wang M, Mei Z, Diao X. Flexible inorganic all-solid-state electrochromic devices toward visual energy storage and two-dimensional color tunability. ACS Appl Mater Interfaces 2023;15:15646-56.

59. Park H, Kim DS, Hong SY, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale 2017;9:7631-40.

60. Santiago-Malagón S, Río-Colín D, Azizkhani H, Aller-Pellitero M, Guirado G, Del Campo FJ. A self-powered skin-patch electrochromic biosensor. Biosens Bioelectron 2021;175:112879.

61. Kim DS, Park H, Hong SY, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Appl Surf Sci 2019;471:300-8.

62. Liu G, Wang Z, Wang J, Liu H, Li Z. Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range. J Colloid Interface Sci 2024;655:493-507.

63. Zhou F, Liang D, Liu S, Guo Z, Wang M, Zhou G. Water-based additive-free chromic inks for printing of flexible photochromics and electrochromics. ACS Appl Mater Interfaces 2023;15:49418-26.

64. Wu C, Chen H, Tan J, et al. Electrochromic conjugated polymers containing benzotriazole and thiophene performing sub-second response time and 916 cm2 C-1 superb coloration efficiency. Sol Energy Mat Sol C 2023;257:112355.

65. Yin L, Moon J, Sempionatto JR, et al. A passive perspiration biofuel cell: high energy return on investment. Joule 2021;5:1888-904.

66. Zhang J, Jena SR, Higuchi M. Flexible multicolor rewritable paper coated with metallosupramolecular polymers for electrochromic printing and natural erasing by humidity. ACS Appl Polym Mater 2023;5:6950-7.

67. Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays 2006;27:2-18.

68. Rao A, Zhang S, Hu J, et al. Fabry-Perot cavity tunable multicolor flexible electrochromic device based on porous filter membrane. J Alloys Compd 2023;969:172310.

69. Wang Z, Wang X, Cong S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat Commun 2020;11:302.

70. Chen J, Wang Z, Chen Z, Cong S, Zhao Z. Fabry-Perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Lett 2020;20:1915-22.

71. Brooke R, Edberg J, Iandolo D, Berggren M, Crispin X, Engquist I. Controlling the electrochromic properties of conductive polymers using UV-light. J Mater Chem C 2018;6:4663-70.

72. Zhang L, Chao D, Yang P, et al. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv Energy Mater 2020;10:2000142.

73. Moon HC, Kim CH, Lodge TP, Frisbie CD. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl Mater Interfaces 2016;8:6252-60.

74. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta 2011;57:4-13.

75. Wu W, Fang H, Wu L, Ma H, Wang H. Temperature-dependent electrochromic devices for energy-saving dual-mode displays. ACS Appl Mater Interfaces 2023;15:4113-21.

76. Wu C, Hsu C, Huang K, Nien P, Lin J, Ho K. A photoelectrochromic device based on gel electrolyte with a fast switching rate. Sol Energy Mat Sol C 2012;99:148-53.

77. Fang H, Wu L, Ma H, et al. Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chem Eng J 2022;438:135383.

78. Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with enhanced electrochromism and electrochemical tunable diffraction. ACS Appl Mater Interfaces 2021;13:58011-8.

79. Pietsch M, Schlisske S, Held M, Strobel N, Wieczorek A, Hernandez-sosa G. Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. J Mater Chem C 2020;8:16716-24.

80. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 2012;24:4071-96.

81. Eh ALS, Lu X, Lee PS. Advances in polymer electrolytes for electrochromic applications. In: Mortimer RJ, Rosseinsky DR, Monk PMS, editors. Electrochromic materials and devices. Wiley; 2013. pp. 289-310.

82. Jensen J, Krebs FC. From the bottom up - flexible solid state electrochromic devices. Adv Mater 2014;26:7231-4.

83. Poh WC, Eh AL, Wu W, Guo X, Lee PS. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv Mater 2022;34:e2206952.

84. Bai Z, Wu X, Fang R, et al. Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me2 for flexible electrochromic displays. Adv Funct Mater 2024;34:2312587.

85. Song R, Li G, Zhang Y, Rao B, Xiong S, He G. Novel electrochromic materials based on chalcogenoviologens for smart windows, E-price tag and flexible display with improved reversibility and stability. Chem Eng J 2021;422:130057.

86. Kim J, Myoung J. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv Funct Mater 2019;29:1808911.

87. Gu C, Jia AB, Zhang YM, Zhang SX. Emerging electrochromic materials and devices for future displays. Chem Rev 2022;122:14679-721.

88. Kim JW, Kim S, Jeong YR, et al. Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chem Eng J 2022;430:132685.

89. Viñuales A, Alesanco Y, Cabañero G, Sobrado J, Tena-zaera R. Incorporating paper matrix into flexible devices based on liquid electrochromic mixtures: Enhanced robustness, durability and multi-color versatility. Sol Energy Mat Sol C 2017;167:22-7.

90. Gu C, Wang X, Jia A, et al. A strategy of stabilization via active energy-exchange for bistable electrochromic displays. CCS Chem 2022;4:2757-67.

91. Lang AW, Österholm AM, Reynolds JR. Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv Funct Mater 2019;29:1903487.

92. Li S, Yan J, Li Y, et al. Dynamically transflective multicolor modulation via single metal-dielectric inorganic electrochromic electrode. Giant 2024;17:100229.

93. Moon HC, Lodge TP, Frisbie CD. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem Mater 2015;27:1420-5.

94. Kim J, Kwon D, Myoung J. Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability. Chem Eng J 2020;387:124145.

95. Brooke R, Edberg J, Crispin X, Berggren M, Engquist I, Jonsson MP. Greyscale and paper electrochromic polymer displays by UV patterning. Polymers 2019;11:267.

96. Freitag K, Brooke R, Nilsson M, Åhlin J, Beni V, Andersson Ersman P. Screen printed reflective electrochromic displays for paper and other opaque substrates. ACS Appl Opt Mater 2023;1:578-86.

97. Andersson Ersman P, Freitag K, Nilsson M, et al. Electrochromic displays screen printed on transparent nanocellulose-based substrates. Adv Photon Res 2023;4:2200012.

98. Brooke R, Petsagkourakis I, Wijeratne K, Andersson Ersman P. Electrochromic displays manufactured by a combination of vapor phase polymerization and screen printing. Adv Mater Technol 2022;7:2200054.

99. Brooke R, Petsagkourakis I, Majee S, Olsson O, Dahlin A, Andersson Ersman P. All-printed multilayers and blends of poly(dioxythiophene) derivatives patterned into flexible electrochromic displays. Macro Mater Eng 2023;308:2200453.

100. Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019;10:1795.

101. McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol 2017;12:343-50.

102. Zhang Y, Xu B, Zhao F, et al. Inkjet printing for smart electrochromic devices. FlexMat 2024;1:23-45.

103. Cai G, Cheng X, Layani M, et al. Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 2018;49:147-54.

104. Chen J, Tan AWM, Eh AL, Lee PS. Scalable inkjet printing of electrochromic smart windows for building energy modulation. Adv Energy Sustain Res 2022;3:2100172.

105. Zhan Y, Tan MRJ, Cheng X, et al. Ti-Doped WO3 synthesized by a facile wet bath method for improved electrochromism. J Mater Chem C 2017;5:9995-10000.

106. Cai G, Darmawan P, Cheng X, Lee PS. Inkjet printed large area multifunctional smart windows. Adv Energy Mater 2017;7:1602598.

107. Cai G, Darmawan P, Cui M, et al. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 2016;8:348-57.

108. Reinhardt K, Hofmann N, Eberstein M. The importance of shear thinning, thixotropic and viscoelastic properties of thick film pastes to predict effects on printing performance. In: 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition; 2017 Sep 10-13; Warsaw, Poland. IEEE; 2017. p. 1-7.

109. Li X, Yun TY, Kim KW, Kim SH, Moon HC. Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration. ACS Appl Mater Interfaces 2020;12:4022-30.

110. Wang Q, Meng Q, Liu H, Jiang L. Chinese brushes: from controllable liquid manipulation to template-free printing microlines. Nano Res 2015;8:97-105.

111. Aller Pellitero M, del Campo FJ. Electrochromic sensors: innovative devices enabled by spectroelectrochemical methods. Curr Opin Electroche 2019;15:66-72.

112. Jang JE, Jung JE, Noh CH, et al. P-167: 4.5” Electrochromic display with passive matrix driving. Symp Digest Tech Papers 2008;39:1826-9.

113. Ersman P, Kawahara J, Berggren M. Printed passive matrix addressed electrochromic displays. Org Electron 2013;14:3371-8.

114. Preston C, Dobashi Y, Nguyen NT, et al. Intrinsically stretchable integrated passive matrix electrochromic display using PEDOT:PSS ionic liquid composite. ACS Appl Mater Interfaces 2023;15:28288-99.

115. Andersson Ersman P, Lassnig R, Strandberg J, et al. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat Commun 2019;10:5053.

116. Cao X, Lau C, Liu Y, et al. Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 2016;10:9816-22.

117. Koo J, Amoli V, Kim SY, et al. Low-power, deformable, dynamic multicolor electrochromic skin. Nano Energy 2020;78:105199.

118. Linderhed U, Petsagkourakis I, Ersman PA, Beni V, Tybrandt K. Fully screen printed stretchable electrochromic displays. Flex Print Electron 2021;6:045014.

119. Howard EL, Österholm AM, Shen DE, Panchumarti LP, Pinheiro C, Reynolds JR. Cost-effective, flexible, and colorful dynamic displays: removing underlying conducting layers from polymer-based electrochromic devices. ACS Appl Mater Interfaces 2021;13:16732-43.

120. Bi S, Jin W, Han X, et al. Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy 2022;102:107629.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/