REFERENCES

1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61.

2. Pourkiaei SM, Ahmadi MH, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy 2019;186:115849.

3. Qin B, Wang D, Liu X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021;373:556-61.

4. Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev 2020;120:7399-515.

5. Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K. Micro-thermoelectric devices. Nat Electron 2022;5:333-47.

6. Chen W, Shi X, Zou J, Chen Z. Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater Sci Eng R Rep 2022;151:100700.

7. Chen WY, Shi XL, Zou J, Chen ZG. Thermoelectric coolers: progress, challenges, and opportunities. Small Methods 2022;6:e2101235.

8. Riffat SB, Ma X. Improving the coefficient of performance of thermoelectric cooling systems: a review. Int J Energy Res 2004;28:753-68.

9. Shi X, Sun S, Wu T, et al. Weavable thermoelectrics: advances, controversies, and future developments. Mater Futures 2024;3:012103.

10. Wu H, Shi X, Duan J, Liu Q, Chen ZG. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ Sci 2023;16:1870-906.

11. Chen W, Shi X, Zou J, Chen Z. Wearable fiber-based thermoelectrics from materials to applications. Nano Energy 2021;81:105684.

12. Zhu M, Shi X, Wu H, Liu Q, Chen Z. Advances in Ag2S-based thermoelectrics for wearable electronics: progress and perspective. Chem Eng J 2023;475:146194.

13. Hu B, Shi XL, Cao T, et al. Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering. Small Sci 2023:2300061.

14. Cao T, Shi XL, Zou J, Chen ZG. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021;1:2021007.

15. Cao T, Shi X, Li M, et al. Advances in bismuth-telluride-based thermoelectric devices: progress and challenges. eScience 2023;3:100122.

16. Huang HS, Weng YC, Chang YW, Chen SL, Ke MT. Thermoelectric water-cooling device applied to electronic equipment. Int Commun Heat Mass Transfer 2010;37:140-6.

17. Riffat SB, Ma X. Thermoelectrics: a review of present and potential applications. Appl Therm Eng 2003;23:913-35.

18. Hu B, Shi X, Zou J, Chen Z. Thermoelectrics for medical applications: progress, challenges, and perspectives. Chem Eng J 2022;437:135268.

19. Guo D, Sheng Q, Dou X, Wang Z, Xie L, Yang B. Application of thermoelectric cooler in temperature control system of space science experiment. Appl Therm Eng 2020;168:114888.

20. Salah WA, Abuhelwa M. Review of thermoelectric cooling devices recent applications. J Eng Sci Technol 2020;15:455-76. Available from: https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_34.pdf. [Last accessed on 4 Sep 2024]

21. Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Elec Mater 2009;38:1245-51.

22. Choi H, Yun S, Whang K. Development of a temperature-controlled car-seat system utilizing thermoelectric device. Appl Therm Eng 2007;27:2841-9.

23. Xu J, Cai X, Cai S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ Mater 2023;6:e12450.

24. Zhu J, Wang Y, Huang Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat Commun 2022;13:2261.

25. Sun Y, Shi X, Yang Y, et al. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater 2022;32:2201584.

26. Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power Sources 2018;382:176-8.

27. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013;226:272-88.

28. Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110:377-82.

29. Yan J, Wang Q, Li K, Sun J. Numerical study on the thermal performance of a composite board in battery thermal management system. Appl Therm Eng 2016;106:131-40.

30. Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4:743-70.

31. Lu M, Zhang X, Ji J, Xu X, Zhang Y. Research progress on power battery cooling technology for electric vehicles. J Energy Storage 2020;27:101155.

32. Alaoui C. Solid-State Thermal management for lithium-ion EV batteries. IEEE Trans Veh Technol 2013;62:98-107.

33. Sait H. Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system. J Energy Storage 2022;52:104692.

34. Zhou G, Li F, Cheng H. Progress in flexible lithium batteries and future prospects. Energy Environ Sci 2014;7:1307-38.

35. Fang Z, Wang J, Wu H, Li Q, Fan S, Wang J. Progress and challenges of flexible lithium ion batteries. J Power Sources 2020;454:227932.

36. Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources 2001;99:70-7.

37. Liu Y, Yang S, Guo B, Deng C. Numerical analysis and design of thermal management system for lithium ion battery pack using thermoelectric coolers. Adv Mechan Eng 2014;6:852712.

38. Song W, Bai F, Chen M, Lin S, Feng Z, Li Y. Thermal management of standby battery for outdoor base station based on the semiconductor thermoelectric device and phase change materials. Appl Therm Eng 2018;137:203-17.

39. Liu X, Zhang CF, Zhou JG, Xiong X, Wang YP. Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material. Appl Energy 2022;322:119503.

40. Buchalik R, Nowak G, Nowak I. Mathematical model of a thermoelectric system based on steady- and rapid-state measurements. Appl Energy 2021;293:116943.

41. Hunt IA, Zhao Y, Patel Y, Offer J. Surface cooling causes accelerated degradation compared to tab cooling for lithium-ion pouch cells. J Electrochem Soc 2016;163:A1846-52.

42. Wang T, Tseng K, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl Energy 2014;134:229-38.

43. Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng 2019;155:96-109.

44. Idi MM, Karkri M, Abdou Tankari M. A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations. Int J Heat Mass Transfer 2021;169:120894.

45. Sahin RC, Gocmen S, Cetkin E. Thermal management system for air-cooled battery packs with flow-disturbing structures. J Power Sources 2022;551:232214.

46. Baveja R, Bhattacharya J, Panchal S, Fraser R, Fowler M. Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. J Energy Storage 2023;70:107967.

47. Rajan JT, Jayapal VS, Krishna M, et al. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol phase change material. Sustain Energy Technol Assess 2022;51:101943.

48. Sudhakaran S, Terese M, Mohan Y, Thampi AD, Rani S. Influence of various parameters on the cooling performance of battery thermal management systems based on phase change materials. Appl Therm Eng 2023;222:119936.

49. Hameed MM, Mansor MB, Azau MAM, Alshara AK. Computational design and analysis of LiFePO4 battery thermal management system (BTMS) using thermoelectric cooling/thermoelectric generator (TEC-TEG) in electric vehicles (EVs). J Energy Storage 2023;72:108394.

50. Kim BR, Nguyen TN, Park CW. Cooling performance of thermal management system for lithium-ion batteries using two types of cold plate: experiment and MATLAB/Simulink-Simscape simulation. Intl Commun Heat Mass Transfer 2023;145:106816.

51. Liao G, Jiang K, Zhang F, et al. Thermal performance of battery thermal management system coupled with phase change material and thermoelectric elements. J Energy Storage 2021;43:103217.

52. Hamid Elsheikh M, Shnawah DA, Sabri MFM, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev 2014;30:337-55.

53. Cao T, Shi X, Chen Z. Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 2023;131:101003.

54. Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 2014;66:15-24.

55. Salameh ZM, Alaoui C. Modeling and simulation of a thermal management system for electric vehicles. In: IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468); 2003 Nov 2-6; Roanoke, VA, USA. IEEE; 2004. pp. 887-90.

56. Alaoui C, Salameh Z. A novel thermal management for electric and hybrid vehicles. IEEE Trans Veh Technol 2005;54:468-76.

57. Lyu Y, Siddique A, Majid S, Biglarbegian M, Gadsden S, Mahmud S. Electric vehicle battery thermal management system with thermoelectric cooling. Energy Rep 2019;5:822-7.

58. Siddique ARM, Mahmud S, Heyst BV. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources 2018;401:224-37.

59. Hameed MM, Mansor M, Azrin Mohd Azau M, Muhsin S. Thermoelectric cooler performance enhancement using thermoelectric generators and their use as a single model to improve the performance of thermal battery management systems for electric vehicles. Energy Storage 2023;5:e406.

60. Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196:5685-96.

61. Fan L, Khodadadi J, Pesaran A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources 2013;238:301-12.

62. Alaoui C. Thermal management for energy storage system for smart grid. J Energy Storage 2017;13:313-24.

63. Li X, Zhong Z, Luo J, et al. Experimental investigation on a thermoelectric cooler for thermal management of a lithium-ion battery module. Int J Photoenergy 2019;2019:3725364.

64. Wang Z, Du C. A comprehensive review on thermal management systems for power lithium-ion batteries. Renew Sustain Energy Rev 2021;139:110685.

65. Yang Q, Zeng T, Zhang C, et al. Modeling and simulation of vehicle integrated thermal management system for a fuel cell hybrid vehicle. Energy Convers Manag 2023;278:116745.

66. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011;158:R1.

67. Chen D, Jiang J, Kim G, Yang C, Pesaran A. Comparison of different cooling methods for lithium ion battery cells. Appl Therm Eng 2016;94:846-54.

68. Luo D, Zhao Y, Cao J, Chen W, Zhao Y, Cao B. Performance analysis of a novel thermoelectric-based battery thermal management system. Renew Energy 2024;224:120193.

69. Troxler Y, Wu B, Marinescu M, et al. The effect of thermal gradients on the performance of lithium-ion batteries. J Power Sources 2014;247:1018-25.

70. Liu Z, Tang A, Shan C, Yuan X, Li J. Assessing the impact of current control on the thermal management performance of thermoelectric cooling systems. Int J Energy Res 2021;45:7256-69.

71. Pan Y, Tang A, Liu Z, Shan C. Experimental analysis of power battery preheating system based on thermoelectric elements. Appl Therm Eng 2023;230:120860.

72. An Z, Liu H, Gao W, Gao Z. Cooling and preheating performance of dual-active lithium-ion battery thermal management system under harsh conditions. Appl Therm Eng 2024;242:122421.

73. Rao Z, Wang Q, Huang C. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Appl Energy 2016;164:659-69.

74. Li C, Ding Y, Zhou Z, et al. Parameter optimization and sensitivity analysis of a Lithium-ion battery thermal management system integrated with composite phase change material. Appl Therm Eng 2023;228:120530.

75. Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011;15:4554-71.

76. Luo D, Wu Z, Jiang L, et al. Realizing rapid cooling and latent heat recovery in the thermoelectric-based battery thermal management system at high temperatures. Appl Energy 2024;370:123642.

77. Hallaj SA, Selman JR. A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 2000;147:3231.

78. Jiang L, Zhang H, Li J, Xia P. Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling. Energy 2019;188:116048.

79. Sun X, Yang Y, Zhang H, et al. Experimental research of a thermoelectric cooling system integrated with gravity assistant heat pipe for cooling electronic devices. Energy Procedia 2017;105:4909-14.

80. Ye Y, Saw LH, Shi Y, Tay AA. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng 2015;86:281-91.

81. Yuan W, Yan Z, Tan Z, Chen W, Tang Y. Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries. Can J Chem Eng 2016;94:1901-8.

82. Smith J, Singh R, Hinterberger M, Mochizuki M. Battery thermal management system for electric vehicle using heat pipes. Int J Therm Sci 2018;134:517-29.

83. Gan Y, Wang J, Liang J, Huang Z, Hu M. Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng 2020;164:114523.

84. Zhang C, Xia Z, Wang B, et al. A li-ion battery thermal management system combining a heat pipe and thermoelectric cooler. Energies 2020;13:841.

85. Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng 2019;161:114199.

86. Liang J, Gan Y, Li Y, Tan M, Wang J. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy 2019;189:116233.

87. Kong D, Peng R, Ping P, Du J, Chen G, Wen J. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Convers Manag 2020;204:112280.

88. Putra N, Sandi AF, Ariantara B, Abdullah N, Indra Mahlia TM. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Stud Therm Eng 2020;21:100655.

89. Luo D, Wu Z, Yan Y, et al. Performance investigation and design optimization of a battery thermal management system with thermoelectric coolers and phase change materials. J Clean Prod 2024;434:139834.

90. Lyu Y, Siddique ARM, Gadsden SA, Mahmud S. Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder. Results Eng 2021;10:100214.

91. Chang K, Li Y, Hou X, Li X. Numerical study of fuzzy-PID dual-layer coordinated control strategy for high temperature uniformity of space lithium-ion battery pack based on thermoelectric coolers. J Energy Storage 2022;56:105952.

92. Ding Q, Sun X, Zhu Z, et al. Long-lasting heat dissipation of flexible heat sinks for wearable thermoelectric devices. ACS Appl Mater Interfaces 2024;16:31228-36.

93. Hong S, Gu Y, Seo JK, et al. Wearable thermoelectrics for personalized thermoregulation. Sci Adv 2019;5:eaaw0536.

94. Kim F, Yang SE, Ju H, et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat Electron 2021;4:579-87.

95. Yuan J, Zhu R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl Energy 2020;271:115250.

96. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy 2018;3:301-9.

97. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.

98. Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6.

99. Zhang Y, Gao J, Zhu S, et al. Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis flexibility. ACS Appl Mater Interfaces 2022;14:15317-23.

100. Wei H, Zhang J, Han Y, Xu D. Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Appl Energy 2022;326:119941.

101. Mukaida M, Kirihara K, Ebihara T, Wei Q. Gram-scale polymer-based thermoelectric module for charging Li-ion batteries. Mater Today Energy 2023;32:101238.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/