REFERENCES

1. Jiang HX, Jin SX, Li J, Shakya J, Lin JY. III-nitride blue microdisplays. Appl Phys Lett 2001;78:1303-5.

2. Gong Z, Zhang HX, Gu E, et al. Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output. IEEE Trans Electron Dev 2007;54:2650-8.

3. Liu Z, Lin CH, Hyun BR, et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 2020;9:83.

4. Chen D, Chen YC, Zeng G, Zhang DW, Lu HL. Integration technology of micro-LED for next-generation display. Research 2023;6:0047.

5. Lee HE, Shin JH, Park JH, et al. Micro light-emitting diodes for display and flexible biomedical applications. Adv Funct Mater 2019;29:1808075.

6. Pan Z, Guo C, Wang X, et al. Wafer-scale micro-LEDs transferred onto an adhesive film for planar and flexible displays. Adv Mater Technol 2020;5:2000549.

7. Li C, Pan Z, Guo C, et al. Transfer printed, vertical GaN-on-silicon micro-LED arrays with individually addressable cathodes. IEEE Trans Electron Dev 2022;69:5630-6.

8. Gong Z, Jin S, Chen Y, et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J Appl Phys 2010;107:013103.

9. Liu H, Li H, Wang Z, et al. Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework. Adv Mater 2022;34:e2207350.

10. Jang B, Won S, Kim J, et al. Auxetic meta-display: stretchable display without image distortion. Adv Funct Mater 2022;32:2113299.

11. Hu L, Choi J, Hwangbo S, et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication. npj Flex Electron 2022;6:100.

12. Lee S, Cheng C, Liu C, Yeh C, Lin Y. 9.4-inch 228-ppi flexible micro-LED display. J Soc Info Display 2021;29:360-9.

13. Choi M, Jang B, Lee W, et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv Funct Mater 2017;27:1606005.

14. Lee SY, Park K, Huh C, et al. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy 2012;1:145-51.

15. Kim RH, Kim DH, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 2010;9:929-37.

16. Park SI, Xiong Y, Kim RH, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009;325:977-81.

17. Guo C, Pan Z, Li C, et al. Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth. npj Flex Electron 2022;6:44.

18. Zhang H, Rogers JA. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms. Adv Opt Mater 2019;7:1800936.

19. Kim G, Kim Y, Yoo S, Jang HS, Ko HC. Hexahedral LED arrays with row and column control lines formed by selective liquid-phase plasticization and nondisruptive tucking-based origami. Adv Mater Technol 2020;5:2000010.

20. Zhou L, Zhang Y, Cao G, et al. Wireless self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia. Adv Sci 2023;10:e2205551.

21. Guan S, Tian H, Yang Y, et al. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Nat Protoc 2023;18:1712-44.

22. Yang Y, Wu M, Wegener AJ, et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat Protoc 2022;17:1073-96.

23. Wu Y, Wu M, Vázquez-Guardado A, et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat Commun 2022;13:5571.

24. Kathe C, Michoud F, Schönle P, et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol 2022;40:198-208.

25. Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022;187:114399.

26. Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. Nat Methods 2021;18:1112-6.

27. Lee HE, Choi J, Lee SH, et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv Mater 2018;30:e1800649.

28. Li L, Lu L, Ren Y, et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nat Commun 2022;13:839.

29. Lee GH, Jeon C, Mok JW, et al. Smart wireless near-infrared light emitting contact lens for the treatment of diabetic retinopathy. Adv Sci 2022;9:e2103254.

30. Lingley AR, Ali M, Liao Y, et al. A single-pixel wireless contact lens display. J Micromech Microeng 2011;21:125014.

31. Park Y, Cha E, An HS, et al. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res 2020;13:1347-53.

32. Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 2018;4:eaap9841.

33. Takamatsu T, Chen Y, Yoshimasu T, Nishizawa M, Miyake T. Highly efficient, flexible wireless-powered circuit printed on a moist, soft contact lens. Adv Mater Technol 2019;4:1800671.

34. Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5:149-65.

35. Gong Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 2021;11:842.

36. Sun W, Ji L, Lin Z, et al. 20 µm micro-LEDs mass transfer via laser-induced in situ nanoparticles resonance enhancement. Small 2024:e2309877.

37. Wang L, Yang S, Zhou F, et al. Wafer-scale transferrable GaN enabled by hexagonal boron nitride for flexible light-emitting diode. Small 2024;20:e2306132.

38. Shin J, Kim H, Sundaram S, et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 2023;614:81-7.

39. Zhang S, Liu B, Ren F, et al. Graphene-nanorod enhanced quasi-Van Der Waals epitaxy for high indium composition nitride films. Small 2021;17:e2100098.

40. Yu J, Wang L, Hao Z, et al. Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications. Adv Mater 2020;32:e1903407.

41. Lee CH, Kim YJ, Hong YJ, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater 2011;23:4614-9.

42. Kim Y, Cruz SS, Lee K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017;544:340-3.

43. Cheng CW, Shiu KT, Li N, Han SJ, Shi L, Sadana DK. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat Commun 2013;4:1577.

44. Schermer JJ, Mulder P, Bauhuis GJ, et al. Epitaxial Lift-Off for large area thin film III/V devices. Phys Status Solidi A 2005;202:501-8.

45. Lin C, Dai J, Wang G, Lin M. Chemical lift-off process for blue light-emitting diodes. Appl Phys Express 2010;3:092101.

46. Lin M, Lin C, Huang W, et al. Chemical-mechanical lift-off process for InGaN epitaxial layers. Appl Phys Express 2011;4:062101.

47. Chen Q, Yang K, Shi B, et al. Principles for 2D-material-assisted nitrides epitaxial growth. Adv Mater 2023;35:e2211075.

48. Liang D, Wei T, Wang J, Li J. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy 2020;69:104463.

49. Chung K, In Park S, Baek H, Chung J, Yi G. High-quality GaN films grown on chemical vapor-deposited graphene films. NPG Asia Mater 2012;4:e24.

50. Choi JH, Cho EH, Lee YS, et al. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer. Adv Opt Mater 2014;2:267-74.

51. Huang S, Zhang Y, Leung B, et al. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films. ACS Appl Mater Interfaces 2013;5:11074-9.

52. Choi W, Kim CZ, Kim CS, et al. A repeatable epitaxial lift-off process from a single GaAs substrate for low-cost and high-efficiency III-V solar cells. Adv Energy Mater 2014;4:1400589.

53. Kirk AP, Cardwell DW, Wood JD, et al. Recent progress in epitaxial lift-off solar cells. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC); 2018 Jun 10-15; Waikoloa, HI, USA. IEEE; 2018. pp. 32-5.

54. Park SH, Kim TJ, Lee HE, et al. Universal selective transfer printing via micro-vacuum force. Nat Commun 2023;14:7744.

55. Chang W, Kim J, Kim M, et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 2023;617:287-91.

56. Meitl MA, Zhu Z, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater 2006;5:33-8.

57. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 2012;24:5284-318.

58. Gong Y, Gong Z. Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays. Adv Mater Technol 2023;8:2200949.

59. Lee D, Cho S, Park C, et al. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 2023;619:755-60.

60. Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat Electron 2021;4:513-21.

61. Jiao R, Wang R, Wang Y, et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst Nanoeng 2023;9:149.

62. Biswas S, Schoeberl A, Hao Y, et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix. Nat Commun 2019;10:4909.

63. Yu S, Deng Y, Cheung YK, Yu H. A biaxially stretchable and washable LED Display enabled by a wavy-structured metal grid. J Microelectromech Syst 2022;31:771-6.

64. Kang J, Luo H, Tang W, et al. 71-2: enabling processes and designs for tight-pitch micro-LED based stretchable display. Symp Dig Tech Pap 2021;52:1056-9.

65. Liu Z, Zhou Y, Qu X, et al. A self-powered optogenetic system for implantable blood glucose control. Research 2022;2022:9864734.

66. Zhang H, Gutruf P, Meacham K, et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci Adv 2019;5:eaaw0873.

67. Phan DT, Mondal S, Tran LH, et al. A flexible, and wireless LED therapy patch for skin wound photomedicine with IoT-connected healthcare application. Flex Print Electron 2021;6:045002.

68. Zhao Z, Liu K, Liu Y, Guo Y, Liu Y. Intrinsically flexible displays: key materials and devices. Natl Sci Rev 2022;9:nwac090.

69. Chen F, Huang Q, Zheng Z. Permeable conductors for wearable and on-skin electronics. Small Struct 2022;3:2100135.

70. Zou S, Li Y, Gong Z. Wafer-scale patterning of high-resolution quantum dot films with a thickness over 10 μm for improved color conversion. Nanoscale 2023;15:18317-27.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/