REFERENCES
1. Dubey A, Ray S. Cortical electrocorticogram (ECoG) is a local signal. J Neurosci 2019;39:4299-311.
2. Alahi MEE, Liu Y, Xu Z, Wang H, Wu T, Mukhopadhyay SC. Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation. Mater Today Commun 2021;29:102853.
3. Yang T, Hakimian S, Schwartz TH. Intraoperative electrocorticography (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord 2014;16:271-9.
4. Boran E, Ramantani G, Krayenbühl N, et al. High-density ECoG improves the detection of high frequency oscillations that predict seizure outcome. Clin Neurophysiol 2019;130:1882-8.
5. Anwar H, Khan QU, Nadeem N, Pervaiz I, Ali M, Cheema FF. Epileptic seizures. Discoveries 2020;8:e110.
6. Shoeibi A, Khodatars M, Ghassemi N, et al. Epileptic seizures detection using deep learning techniques: a review. Int J Environ Res Public Health 2021;18:5780.
7. Assi E, Nguyen DK, Rihana S, Sawan M. Towards accurate prediction of epileptic seizures: a review. Biomed Signal Proces 2017;34:144-57.
8. Amengual-Gual M, Sánchez Fernández I, Loddenkemper T. Patterns of epileptic seizure occurrence. Brain Res 2019;1703:3-12.
9. Das R, Moradi F, Heidari H. Biointegrated and wirelessly powered implantable brain devices: a review. IEEE Trans Biomed Circuits Syst 2020;14:343-58.
10. Koo JH, Song J, Yoo S, Sunwoo S, Son D, Kim D. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv Mater Technol 2020;5:2000407.
11. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.
12. Farkhani H, Tohidi M, Farkhani S, Madsen JK, Moradi F. A low-power high-speed spintronics-based neuromorphic computing system using real-time tracking method. IEEE J Emerg Sel Topics Circuits Syst 2018;8:627-38.
13. Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. Nat Mater 2019;18:309-23.
14. Ielmini D, Wong HP. In-memory computing with resistive switching devices. Nat Electron 2018;1:333-43.
15. Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 2000;43:3-31.
16. Chun J, Atalan E, Kim SB, et al. Rapid identification of streptomycetes by artificial neural network analysis of pyrolysis mass spectra. FEMS Microbiol Lett 1993;114:115-9.
17. Chun J, Atalan E, Ward AC, Goodfellow M. Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. FEMS Microbiol Lett 1993;107:321-6.
18. Timmins EM, Goodacre R. Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks. J Appl Microbiol 1997;83:208-18.
19. Goodacre R. Use of pyrolysis mass spectrometry with supervised learning for the assessment of the adulteration of milk of different species. Appl Spectrosc 1997;51:1144-53.
20. Vallejo-cordoba B, Arteaga G, Nakai S. Predicting milk shelf-life based on artificial neural networks and headspace gas chromatographic data. J Food Sci 1995;60:885-8.
21. Horimoto Y, Lee K, Nakai S. Classification of microbial defects in milk using a dynamic headspace gas chromatograph and computer-aided data processing. 2. Artificial neural networks, partial least-squares regression analysis, and principal component regression analysis. J Agric Food Chem 1997;45:743-7.
22. Yazdanbakhsh A, Park J, Sharma H, Lotfi-Kamran P, Esmaeilzadeh H. Neural acceleration for GPU throughput processors. In: The 48th Annual IEEE/ACM International Symposium of Microarchitecture; 2015 Dec 05-09; Waikiki, Hawaii. Association for Computing Machinery; 2015. pp. 482-93.
23. Tan T, Cao G. Efficient execution of deep neural networks on mobile devices with NPU. In: Proceedings of the 20th International Conference on Information Processing in Sensor Networks (Co-Located with CPS-IoT Week 2021); 2021 May 18-21; Nashville, USA. Association for Computing Machinery; 2021. pp. 283-98.
24. She X, Long Y, Mukhopadhyay S. Improving robustness of ReRAM-based spiking neural network accelerator with stochastic spike-timing-dependent-plasticity. In: 2019 International Joint Conference on Neural Networks (IJCNN); 2019 Jul 14-19; Budapest, Hungary. IEEE; 2019. p. 1-8.
25. Schuman CD, Kulkarni SR, Parsa M, Mitchell JP, Date P, Kay B. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci 2022;2:10-9.
26. Rajendran B, Sebastian A, Schmuker M, Srinivasa N, Eleftheriou E. Low-power neuromorphic hardware for signal processing applications: a review of architectural and system-level design approaches. IEEE Signal Process Mag 2019;36:97-110.
27. Young AR, Dean ME, Plank JS, Rose GS. A review of spiking neuromorphic hardware communication systems. IEEE Access 2019;7:135606-20.
28. Wan Q, Sharbati MT, Erickson JR, Du Y, Xiong F. Emerging artificial synaptic devices for neuromorphic computing. Adv Mater Technol 2019;4:1900037.
29. Kornijcuk V, Jeong DS. Recent progress in real-time adaptable digital neuromorphic hardware. Adv Intell Syst 2019;1:1900030.
30. Geng Z, Pepper MG, Yan Y. A multiplexer system for multi-channel charge signal processing in in-shoe force measurement. In: 2011 IEEE International Instrumentation and Measurement Technology Conference; 2011 May 10-12; Hangzhou, China. IEEE; 2011. p. 1-5.
31. Davies M, Wild A, Orchard G, et al. Advancing neuromorphic computing with loihi: a survey of results and outlook. Proc IEEE 2021;109:911-34.
32. del Valle J, Ramírez JG, Rozenberg MJ, Schuller IK. Challenges in materials and devices for resistive-switching-based neuromorphic computing. J Appl Phys 2018;124:211101.
33. Zou X, Xu S, Chen X, Yan L, Han Y. Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci China Inf Sci 2021;64:3227.
34. Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn 2017;89:1569-78.
35. Burkitt AN. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 2006;95:1-19.
36. Long L, Fang G. A review of biologically plausible neuron models for spiking neural networks. In: AIAA Infotech@Aerospace 2010; 2010 Apr 20-22; Atlanta, Georgia. American Institute of Aeronautics and Astronautics; 2010.
37. Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a review. Brain Sci 2022;12:863.
38. Lansky P, Ditlevsen S. A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol Cybern 2008;99:253-62.
39. Lee K, Silva BN, Han K. Deep learning entrusted to fog nodes (DLEFN) based smart agriculture. Appl Sci 2020;10:1544.
40. Yang R, Huang H, Guo X. Memristive synapses and neurons for bioinspired computing. Adv Elect Mater 2019;5:1900287.
41. Burr GW, Shelby RM, Sebastian A, et al. Neuromorphic computing using non-volatile memory. Adv Phys X 2017;2:89-124.
42. Upadhyay NK, Jiang H, Wang Z, Asapu S, Xia Q, Joshua Yang J. Emerging memory devices for neuromorphic computing. Adv Mater Technol 2019;4:1800589.
43. Shama F, Haghiri S, Imani MA. FPGA realization of hodgkin-huxley neuronal model. IEEE Trans Neural Syst Rehabil Eng 2020;28:1059-68.
44. Liu Y, Iu HHC, Qian Y. Implementation of Hodgkin-Huxley neuron model with the novel memristive oscillator. IEEE Trans Circuits Syst II 2021;68:2982-6.
45. Corinto F, Ascoli A, Sung-Mo SK. Memristor-based neural circuits. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS); 2013 May 19-23; Beijing, China. IEEE; 2013. pp. 417-20.
46. Fang X, Duan S, Wang L. Memristive Hodgkin-Huxley spiking neuron model for reproducing neuron behaviors. Front Neurosci 2021;15:730566.
47. Xu Y, Gao S, Li Z, Yang R, Miao X. Adaptive Hodgkin–Huxley neuron for retina-inspired perception. Adv Intell Syst 2022;4:2200210.
48. Yang Z, Han Z, Huang Y, Ye TT. 55nm CMOS analog circuit implementation of LIF and STDP functions for low-power SNNs. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED); 2021 Jul 26-28; Boston, USA. IEEE; 2021. p. 1-6.
49. Koshino S, Misawa N, Matsui C, Takeuchi K. Compact CiM co-optimized by heterogeneous multi-level ReRAM & random weight SNN for event-based vision sensor of edge AI. In: 2022 IEEE Silicon Nanoelectronics Workshop (SNW); 2022 Jun 11-12; Honolulu, USA. IEEE; 2022. p. 1-2.
50. Luo J, Yu L, Liu T, et al. Capacitor-less stochastic leaky-FeFET neuron of both excitatory and inhibitory connections for SNN with reduced hardware cost. In: 2019 IEEE International Electron Devices Meeting (IEDM); 2019 Dec 07-11; San Francisco, USA. IEEE; 2019. pp. 6.4.1-6.4.4.
51. Uleru GI, Hulea M. Influence of capacitor variability on the electronic spiking neurons. In: 2021 25th International Conference on System Theory, Control and Computing (ICSTCC); 2021 Oct 20-23; Iasi, Romania. IEEE; 2021. pp. 255-9.
52. Radamson HH, Zhu H, Wu Z, et al. State of the art and future perspectives in advanced CMOS technology. Nanomaterials 2020;10:1555.
53. Rahiminejad E, Azad F, Parvizi-Fard A, Amiri M, Linares-Barranco B. A neuromorphic CMOS circuit with self-repairing capability. IEEE Trans Neural Netw Learn Syst 2022;33:2246-58.
54. Basu A, Acharya J, Karnik T, et al. Low-power, adaptive neuromorphic systems: recent progress and future directions. IEEE J Emerg Sel Topics Circuits Syst 2018;8:6-27.
55. Saxena V, Wu X, Zhu K. Energy-efficient CMOS memristive synapses for mixed-signal neuromorphic system-on-a-chip. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS); 2018 May 27-30; Florence, Italy. IEEE; 2018. p. 1-5.
56. Iakymchuk T, Rosado-muñoz A, Guerrero-martínez JF, Bataller-mompeán M, Francés-víllora JV. Simplified spiking neural network architecture and STDP learning algorithm applied to image classification. J Image Video Proc 2015;2015:59.
57. Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 2013;7:2.
58. Debanne D, Inglebert Y. Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023;80:102707.
59. Wang R, Shi T, Zhang X, et al. Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials 2018;11:2102.
60. Indiveri G, Chicca E, Douglas R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 2006;17:211-21.
61. Wang R, Yang J, Mao J, et al. Recent advances of volatile memristors: devices, mechanisms, and applications. Adv Intell Syst 2020;2:2000055.
62. Corinto F, Civalleri PP, Chua LO. A theoretical approach to memristor devices. IEEE J Emerg Sel Topics Circuits Syst 2015;5:123-32.
63. Woo J, Moon K, Song J, et al. Improved synaptic behavior under identical Pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett 2016;37:994-7.
64. Li Z, Wu J, Hu Z, et al. Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam. Nat Commun 2017;8:15561.
65. Wang Z, Wu H, Burr GW, et al. Resistive switching materials for information processing. Nat Rev Mater 2020;5:173-95.
66. Xu Z, Bando Y, Wang W, Bai X, Golberg D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 2010;4:2515-22.
67. Yuan F, Zhang Z, Liu C, et al. Real-time observation of the electrode-size-dependent evolution dynamics of the conducting filaments in a SiO2 layer. ACS Nano 2017;11:4097-104.
68. Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W. Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 2012;3:732.
69. Tian X, Yang S, Zeng M, et al. Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv Mater 2014;26:3649-54.
70. Yuan R, Tiw PJ, Cai L, et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat Commun 2023;14:3695.
71. Chen W, Song L, Wang S, et al. Essential characteristics of memristors for neuromorphic computing. Adv Elect Mater 2023;9:2200833.
72. Sun W, Gao B, Chi M, et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun 2019;10:3453.
73. Seok JY, Song SJ, Yoon JH, et al. A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv Funct Mater 2014;24:5316-39.
74. Feng X, Li S, Wong SL, et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano 2021;15:1764-74.
75. Li Y, Ang K. Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv Intell Syst 2021;3:2000137.
76. Kuncic Z, Nakayama T. Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing. Adv Phys X 2021;6:1894234.
77. Lee YK, Jeon JW, Park ES, et al. Matrix mapping on crossbar memory arrays with resistive interconnects and its use in in-memory compression of biosignals. Micromachines 2019;10:306.
78. Li J, Ren SG, Li Y, et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci Adv 2023;9:eadf7474.
79. Woods W, Teuscher C. Approximate vector matrix multiplication implementations for neuromorphic applications using memristive crossbars. In: 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH); 2017 Jul 25-26; Newport, USA. IEEE; 2017. pp. 103-8.
80. Bao H, Zhou H, Li J, et al. Toward memristive in-memory computing: principles and applications. Front Optoelectron 2022;15:23.
81. Bian J, Tao Y, Wang Z, et al. A stacked memristive device enabling both analog and threshold switching behaviors for artificial leaky integrate and fire neuron. IEEE Electron Device Lett 2022;43:1436-9.
82. Yang Z, Liu K, Yuan R, et al. Seizure detection using dynamic memristor-based reservoir computing and leaky integrate-and-fire neuron for post-processing. APL Mach Learn 2023;1:046123.
83. Moon J, Ma W, Shin JH, et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat Electron 2019;2:480-7.
84. Du C, Cai F, Zidan MA, Ma W, Lee SH, Lu WD. Reservoir computing using dynamic memristors for temporal information processing. Nat Commun 2017;8:2204.
85. Zhong Y, Tang J, Li X, Gao B, Qian H, Wu H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat Commun 2021;12:408.
86. Liu Z, Tang J, Gao B, et al. Multichannel parallel processing of neural signals in memristor arrays. Sci Adv 2020;6:eabc4797.
87. Abbas H, Abbas Y, Truong SN, et al. A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond Sci Technol 2017;32:065014.
88. Fernando BR, Qi Y, Yakopcic C, Taha TM. 3D memristor crossbar architecture for a multicore neuromorphic system. In: 2020 International Joint Conference on Neural Networks (IJCNN); 2020 Jul 19-24; Glasgow, UK. IEEE; 2020. p. 1-8.
89. Ismail M, Chand U, Mahata C, Nebhen J, Kim S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J Mater Sci Technol 2022;96:94-102.
90. Balakrishna Pillai P, De Souza MM. Nanoionics-based three-terminal synaptic device using zinc oxide. ACS Appl Mater Interfaces 2017;9:1609-18.
91. Lenz J, Del Giudice F, Geisenhof FR, Winterer F, Weitz RT. Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm-2 regime and artificial synaptic behaviour. Nat Nanotechnol 2019;14:579-85.
92. Lee H, Cho SW, Kim SJ, et al. Three-terminal ovonic threshold switch (3T-OTS) with tunable threshold voltage for versatile artificial sensory neurons. Nano Lett 2022;22:733-9.
93. Cohen MH, Fritzsche H, Ovshinsky SR. Simple band model for amorphous semiconducting alloys. Phys Rev Lett 1969;22:1065-8.
95. Nakano M, Shibuya K, Okuyama D, et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 2012;487:459-62.
96. Sarkar T, Lieberth K, Pavlou A, et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat Electron 2022;5:774-83.
97. Parr ZS, Rashid RB, Paulsen BD, et al. Semiconducting small molecules as active materials for p-type accumulation mode organic electrochemical transistors. Adv Elect Mater 2020;6:2000215.
98. Hidalgo Castillo TC, Moser M, Cendra C, et al. Simultaneous performance and stability improvement of a p-type organic electrochemical transistor through additives. Chem Mater 2022;34:6723-33.
99. Sun H, Gerasimov J, Berggren M, Fabiano S. n-Type organic electrochemical transistors: materials and challenges. J Mater Chem C 2018;6:11778-84.
100. Giovannitti A, Nielsen CB, Sbircea DT, et al. N-type organic electrochemical transistors with stability in water. Nat Commun 2016;7:13066.
101. Liu L, Xu W, Ni Y, et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 2022;16:2282-91.
102. Imai J, Katagiri H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int Immunol 2022;34:67-79.
103. Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 2009;10:345-59.
104. Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023;380:735-42.
105. Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022;7:eabl7344.
106. Nature Reviews Methods Primers. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Method Prime 2021;1:65.
107. Huang Y, Fan X, Chen S, Zhao N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv Funct Mater 2019;29:1808509.
108. Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science 2018;360:998-1003.
109. Yao X, Zhang Y, Jin W, Hu Y, Cui Y. Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 2021;21:995.
110. Kim S, Lee Y, Kim H, Choi S. A tactile sensor system with sensory neurons and a perceptual synaptic network based on semivolatile carbon nanotube transistors. NPG Asia Mater 2020;12:76.
111. Lee Y, Liu Y, Seo DG, et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat Biomed Eng 2023;7:511-9.
112. He Y, Zhu L, Zhu Y, et al. Recent progress on emerging transistor-based neuromorphic devices. Adv Intell Syst 2021;3:2000210.
113. Wang R, Sun L, Zhu X, et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv Mater Technol 2023;8:2200855.
114. Ahuja P, Akiyama S, Ujjain SK, et al. A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. J Mater Chem A 2019;7:19996-20005.
115. Karimov KS, Khalid FA, Chani MTS. Carbon nanotubes based strain sensors. Measurement 2012;45:918-21.
116. Kang SK, Murphy RKJ, Hwang SW, et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016;530:71-6.
117. Kim DH, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010;9:511-7.
118. Song E, Li R, Jin X, et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018;12:10317-26.
119. Song E, Lee YK, Li R, et al. Transferred, ultrathin oxide bilayers as biofluid barriers for flexible electronic implants. Adv Funct Mater 2018;28:1702284.
120. Lee YK, Yu KJ, Song E, et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017;11:12562-72.
121. Kang SK, Koo J, Lee YK, Rogers JA. Advanced materials and devices for bioresorbable electronics. Acc Chem Res 2018;51:988-98.
122. Shin J, Yan Y, Bai W, et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat Biomed Eng 2019;3:37-46.