REFERENCES

1. Ge D, Mi Q, Gong R, et al. Mass-producible 3D hair structure-editable silk-based electronic skin for multiscenario signal monitoring and emergency alarming system. Adv Funct Mater 2023;33:2305328.

2. Dong Y, Xu D, Yu H, Mi Q, Zou F, Yao X. Highly sensitive, scrub-resistant, robust breathable wearable silk yarn sensors via interfacial multiple covalent reactions for health management. Nano Energy 2023;115:108723.

3. Xu D, Ouyang Z, Dong Y, et al. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv Fiber Mater 2023;5:282-95.

4. Thacker SB, Stroup DF, Sencer DJ. Epidemic assistance by the centers for disease control and prevention: role of the epidemic intelligence service, 1946-2005. Am J Epidemiol 2011;174:S4-15.

5. Ding X, Clifton D, Ji N, et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev Biomed Eng 2021;14:48-70.

6. Wang Y, Zhao C, Wang J, et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv 2021;7:eabe4553.

7. Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 2017;6:1601371.

8. Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 2019;31:e1806739.

9. Nikolic MV, Milovanovic V, Vasiljevic ZZ, Stamenkovic Z. Semiconductor gas sensors: materials, technology, design, and application. Sensors 2020;20:6694.

10. Ren Z, Yang J, Qi D, et al. Flexible sensors based on organic-inorganic hybrid materials. Adv Mater Technol 2021;6:2000889.

11. Prosa M, Bolognesi M, Fornasari L, et al. Nanostructured organic/hybrid materials and components in miniaturized optical and chemical sensors. Nanomaterials 2020;10:480.

12. Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32:e1901924.

13. Hua Q, Shen G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem Soc Rev 2024;53:1316-53.

14. Wang Y, Haick H, Guo S, et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022;51:3759-93.

15. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.

16. Nie B, Liu S, Qu Q, Zhang Y, Zhao M, Liu J. Bio-inspired flexible electronics for smart E-skin. Acta Biomater 2022;139:280-95.

17. Kim M, Kim S, Kwon YW, et al. Emerging bio-interfacing wearable devices for signal monitoring: overview of the mechanisms and diverse sensor designs to target distinct physiological bio-parameters. Adv Sensor Res 2023;2:2200049.

18. Wu J, Chang L, Yu G. Effective data decision-making and transmission system based on mobile health for chronic disease management in the elderly. IEEE Syst J 2021;15:5537-48.

19. Kichloo A, Albosta M, Dettloff K, et al. Telemedicine, the current COVID-19 pandemic and the future: a narrative review and perspectives moving forward in the USA. Fam Med Community Health 2020;8:e000530.

20. Moulaei K, Sheikhtaheri A, Fatehi F, Shanbehzadeh M, Bahaadinbeigy K. Patients’ perspectives and preferences toward telemedicine versus in-person visits: a mixed-methods study on 1226 patients. BMC Med Inform Decis Mak 2023;23:261.

21. Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V. A study on medical Internet of Things and Big Data in personalized healthcare system. Health Inf Sci Syst 2018;6:14.

22. Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. Npj Flex Electron 2023;7:26.

23. Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine MC. 3D printed skin-interfaced UV-visible hybrid photodetectors. Adv Sci 2022;9:e2201275.

24. Lee HE, Lee D, Lee TI, et al. Siloxane hybrid material-encapsulated highly robust flexible μLEDs for biocompatible lighting applications. ACS Appl Mater Interfaces 2022;14:28258-69.

25. Molina-Lopez F, Gao TZ, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat Commun 2019;10:2676.

26. Yang YJ, Cheng MY, Chang WY, et al. An integrated flexible temperature and tactile sensing array using PI-copper films. Sensors Actuators A Phys 2008;143:143-53.

27. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat Commun 2020;11:3823.

28. Xu B, Akhtar A, Liu Y, et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater 2016;28:4462-71.

29. Lee GH, Kang H, Chung JW, et al. Stretchable PPG sensor with light polarization for physical activity-permissible monitoring. Sci Adv 2022;8:eabm3622.

30. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 2018;127:35-45.

31. Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28:4203-18.

32. Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable microneedle-based array patches for continuous electrochemical monitoring and drug delivery: toward a closed-loop system for methotrexate treatment. ACS Sens 2023;8:4161-70.

33. Yang J, Zheng S, Ma D, et al. Masticatory system-inspired microneedle theranostic platform for intelligent and precise diabetic management. Sci Adv 2022;8:eabo6900.

34. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater Sci Technol 2020;43:175-88.

35. Qin R, Nong J, Wang K, et al. Recent advances in flexible pressure sensors based on MXene materials. Adv Mater 2024:e2312761.

36. Eom J, Jaisutti R, Lee H, et al. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces 2017;9:10190-7.

37. Wang C, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28:6640-8.

38. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 2022;34:e2105015.

39. Hempel M, Nezich D, Kong J, Hofmann M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett 2012;12:5714-8.

40. Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 2014;26:6307-12.

41. Wang Y, Lee S, Yokota T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci Adv 2020;6:eabb7043.

42. Liu K, Ouyang B, Guo X, Guo Y, Liu Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electron 2022;6:1.

43. So H, Sim JW, Kwon J, Yun J, Baik S, Chang WS. Carbon nanotube based pressure sensor for flexible electronics. Mater Res Bull 2013;48:5036-9.

44. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 2012;24:2945-86.

45. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications - an overview. Front Bioeng Biotechnol 2016;4:11.

46. Kim DW, Min SY, Lee Y, Jeong U. Transparent flexible nanoline field-effect transistor array with high integration in a large area. ACS Nano 2020;14:907-18.

47. Nela L, Tang J, Cao Q, Tulevski G, Han SJ. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett 2018;18:2054-9.

48. Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A 2005;102:12321-5.

49. Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive review of technological advances, current challenges, and future directions. Electronics 2023;12:2923.

50. Lee HE, Kim S, Ko J, et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater 2016;26:6170-8.

51. Wang J, Zhang F, Zhang J, et al. Key issues and recent progress of high efficient organic light-emitting diodes. J Photochem Photobiol C Photochem Rev 2013;17:69-104.

52. Jeon Y, Choi HR, Park KC, Choi KC. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J Soc Inf Display 2020;28:324-32.

53. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017;11:5992-6003.

54. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv 2016;2:e1501856.

55. Gillan L, Hiltunen J, Behfar MH, Rönkä K. Advances in design and manufacture of stretchable electronics. Jpn J Appl Phys 2022;61:SE0804.

56. Lee HE, Lee D, Lee T, et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 2019;55:454-62.

57. Hu L, Choi J, Hwangbo S, et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication. npj Flex Electron 2022;6:100.

58. Baeg K, Lee J. Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv Mater Technol 2020;5:2000071.

59. Hassan M, Abbas G, Li N, et al. Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv Mater Technol 2022;7:2100773.

60. Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol 2019;37:382-8.

61. Kim Y, Suh JM, Shin J, et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022;377:859-64.

62. Kim JH, Park SY, Kim MK, et al. Long-term UV detecting wearable patches enabled by III-N compound semiconductor-based microphotodetectors. Adv Opt Mater 2023;11:2203083.

63. Kim JH, Joe DJ, Lee HE. Sweat-permeable electronic skin with a pattern of eyes for body temperature monitoring. Micro Nano Syst Lett 2023;11:7.

64. Yeon H, Lee H, Kim Y, et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci Adv 2021;7:eabg8459.

65. Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst Nanoeng 2021;7:25.

66. Ali A, Shaukat H, Bibi S, Altabey WA, Noori M, Kouritem SA. Recent progress in energy harvesting systems for wearable technology. Energy Strat Rev 2023;49:101124.

67. Islam E, Abdullah AM, Chowdhury AR, et al. Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting. Nano Energy 2020;77:105250.

68. Wang H, Cheng J, Wang Z, Ji L, Wang Z. Triboelectric nanogenerators for human-health care. Sci Bull 2021;66:490-511.

69. Niu S, Wang ZL. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015;14:161-92.

70. Gai Y, Wang E, Liu M, et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 2022;6:e2200653.

71. Cheedarala RK, Song JI. Integrated electronic skin (e-skin) for harvesting of TENG energy through push-pull ionic electrets and ion-ion hopping mechanism. Sci Rep 2022;12:3879.

72. Liu X, Zhang Y, Wang X, et al. A battery-free wireless body area network towards state perception under all-weather conditions. Nano Energy 2023;116:108856.

73. Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. npj Mater Degrad 2022;6:68.

74. Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable materials for sustainable health monitoring devices. ACS Appl Bio Mater 2021;4:163-94.

75. Veeralingam S, Sahatiya P, Kadu A, Mattela V, Badhulika S. Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare monitoring. ACS Appl Electron Mater 2019;1:558-68.

76. Wang L, Peng S, Patil A, Jiang J, Zhang Y, Chang C. Enzymatic crosslinked silk fibroin hydrogel for biodegradable electronic skin and pulse waveform measurements. Biomacromolecules 2022;23:3429-38.

77. Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polym Degrad Stab 2020;179:109232.

78. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008;29:1329-44.

79. Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater 2011;7:1421-8.

80. Kang S, Hwang S, Yu S, et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv Funct Mater 2015;25:1789-97.

81. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces 2021;13:8871-9.

82. Hwang GT, Park H, Lee JH, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater 2014;26:4880-7.

83. Kim N, Chen J, Wang W, et al. Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin film. Adv Funct Mater 2021;31:2008242.

84. Yang T, Jiang X, Zhong Y, et al. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens 2017;2:967-74.

85. Currano LJ, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K. Wearable sensor system for detection of lactate in sweat. Sci Rep 2018;8:15890.

86. Xu J, Tao X, Liu X, Yang L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. Anal Chem 2022;94:8659-67.

87. Bi Y, Sun M, Wang J, et al. Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring in raw sweat, saliva, or urine. Anal Chem 2023;95:6690-9.

88. Li S, Wang S, Wu B, et al. Unlocking pomegranate-structured wireless sensors with superhigh sensitivity via room-temperature water-driven rapid solidification of conductive pathways. Nano Energy 2024;120:109148.

89. Kang BH, Park K, Hambsch M, et al. Skin-conformable photoplethysmogram sensors for energy-efficient always-on cardiovascular monitoring systems. Nano Energy 2022;92:106773.

90. Wilkerson JE, Horvath SM, Gutin B, Molnar S, Diaz FJ. Plasma electrolyte content and concentration during treadmill exercise in humans. J Appl Physiol Respir Environ Exerc Physiol 1982;53:1529-39.

91. Kellum JA. Determinants of blood pH in health and disease. Crit Care 2000;4:6-14.

92. Egi M, Bellomo R, Stachowski E, et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med 2008;36:2249-55.

93. Özbek O, Berkel C. Recent advances in potentiometric analysis: paper-based devices. Sensors Int 2022;3:100189.

94. Parrilla M, Cuartero M, Crespo GA. Wearable potentiometric ion sensors. TrAC Trends Anal Chem 2019;110:303-20.

95. Criscuolo F, Ny Hanitra I, Aiassa S, et al. Wearable multifunctional sweat-sensing system for efficient healthcare monitoring. Sensors Actuators B Chem 2021;328:129017.

96. Sharma A, Ansari MZ, Cho C. Ultrasensitive flexible wearable pressure/strain sensors: Parameters, materials, mechanisms and applications. Sensors Actuators A Phys 2022;347:113934.

97. Li X, Zhang R, Yu W, et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2012;2:870.

98. Xiao X, Yuan L, Zhong J, et al. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater 2011;23:5440-4.

99. Teng F, Zi T, Fang J, Liu C, Wu D, Li A. Extremely sensitive wearable strain sensor with wide range based on a simple parallel connection architecture. Adv Elect Mater 2023;9:2200993.

100. Kim SR, Kim JH, Park JW. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned ag nanowire networks. ACS Appl Mater Interfaces 2017;9:26407-16.

101. Hardman D, George Thuruthel T, Iida F. Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater 2022;14:1.

102. Tolvanen J, Hannu J, Jantunen H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring. Sci Rep 2018;8:13241.

103. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res 2008;86:543-61.

104. Johnson M. 'What controls aqueous humour outflow resistance?'. Exp Eye Res 2006;82:545-57.

105. Medeiros FA, Weinreb RN, Zangwill LM, et al. Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology 2008;115:934-40.

106. Liu X, Ye Y, Ge Y, et al. Smart contact lenses for healthcare monitoring and therapy. ACS Nano 2024;18:6817-44.

107. Seo H, Chung WG, Kwon YW, et al. Smart contact lenses as wearable ophthalmic devices for disease monitoring and health management. Chem Rev 2023;123:11488-558.

108. Kim TY, Mok JW, Hong SH, et al. Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat Commun 2022;13:6801.

109. Tseng P, Napier B, Garbarini L, Kaplan DL, Omenetto FG. Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv Mater 2018;30:e1703257.

110. Gloede ME, Paulauskas EE, Gregg MK. Experience and information loss in auditory and visual memory. Q J Exp Psychol 2017;70:1344-52.

111. Hong SY, Kim MS, Park H, et al. High-sensitivity, skin-attachable, and stretchable array of thermo-responsive suspended gate field-effect transistors with thermochromic display. Adv Funct Mater 2019;29:1807679.

112. Chun KS, Kang YJ, Lee JY, et al. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Sci Adv 2021:7.

113. Rambwawasvika H. Alopecia types, current and future treatment. J Dermat Cosmetol 2021;5:93-9.

114. Yoo KH, Kim MN, Kim BJ, Kim CW. Treatment of alopecia areata with fractional photothermolysis laser. Int J Dermatol 2010;49:845-7.

115. Perper M, Aldahan AS, Fayne RA, Emerson CP, Nouri K. Efficacy of fractional lasers in treating alopecia: a literature review. Lasers Med Sci 2017;32:1919-25.

116. Lee HE, Lee SH, Jeong M, et al. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 2018;12:9587-95.

117. Joo H, Lee Y, Kim J, et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci Adv 2021;7:eabd4639.

118. Wang C, Jiang X, Kim HJ, et al. Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials 2022;285:121479.

119. Lee JH, Ahn Y, Lee HE, et al. Wearable surface-lighting micro-light-emitting diode patch for melanogenesis inhibition. Adv Healthc Mater 2023;12:e2201796.

120. Ouyang Z, Li S, Liu J, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022;104:107963.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/