REFERENCES
3. Amjadi M, Kyung K, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 2016;26:1678-98.
4. Wang Y, Zhu P, Tan M, Niu M, Liang S, Mao Y. Recent advances in hydrogel-based self-powered artificial skins for human-machine interfaces. Adv Intell Syst 2023;5:2300162.
5. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.
6. Schwartz G, Tee BC, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 2013;4:1859.
7. Yao S, Ren P, Song R, et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32:e1902343.
8. Takei K, Takahashi T, Ho JC, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 2010;9:821-6.
9. Xu X, Guo L, Liu H, et al. Stretchable electronic facial masks for skin electroporation. Adv Funct Mater 2024;34:2311144.
10. Ye Y, Wan Z, Gunawardane PDSH, et al. Ultra-stretchable and environmentally resilient hydrogels via sugaring-out strategy for soft robotics sensing. Adv Funct Mater 2024:2315184.
11. Ye Y, Oguzlu H, Zhu J, et al. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions. Adv Funct Mater 2023;33:2209787.
12. Zhu P, Yu Z, Sun H, et al. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv Mater 2024;36:e2306653.
13. Chen F, Zhang S, Hu L, et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv Funct Mater 2023;33:2300266.
14. Zhan P, Zhai W, Wei W, et al. Stretchable strain sensor with high sensitivity, large workable range and excellent breathability for wearable electronic skins. Compos Sci Technol 2022;229:109720.
15. Bi Y, Sun M, Zhang Y, et al. Seconds timescale synthesis of highly stretchable antibacterial hydrogel for skin wound closure and epidermal strain sensor. Adv Healthc Mater 2024;13:e2302810.
16. Roy S, Deo KA, Lee HP, et al. 3D printed electronic skin for strain, pressure and temperature sensing. Adv Funct Mater 2024:2313575.
17. Jiang N, Chang X, Hu D, et al. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chem Eng J 2021;424:130418.
18. Wu Z, Tai G, Liu R, Shao W, Hou C, Liang X. Synthesis of borophene on quartz towards hydroelectric generators. J Mater Chem A 2022;10:8218-26.
19. Wang Y, Zhang L, Zhou J, Lu A. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl Mater Interfaces 2020;12:7631-8.
20. Shen D, Xiao M, Xiao Y, et al. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl Mater Interfaces 2019;11:14249-55.
21. Dai J, Zhao H, Lin X, et al. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl Mater Interfaces 2019;11:6483-90.
22. Wang Y, Shu R, Zhang X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding. Angew Chem Int Ed Engl 2023;62:e202303446.
23. Pei D, Yu S, Liu P, et al. Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal. Adv Funct Mater 2022;32:2204257.
24. Bunea AC, Dediu V, Laszlo EA, et al. E-skin: the dawn of a new era of on-body monitoring systems. Micromachines 2021;12:1091.
25. Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 2013;25:5997-6038.
26. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.
27. Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin. Adv Funct Mater 2021;31:2104686.
28. Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 2022;18:e2103734.
29. Jung S, Kim JH, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater 2014;26:4825-30.
30. Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 2021;15:1795-804.
31. Hou C, Wang H, Zhang Q, Li Y, Zhu M. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater 2014;26:5018-24.
32. Cai Y, Shen J, Yang CW, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci Adv 2020;6:eabb5367.
33. Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl Mater Interfaces 2020;12:22212-24.
34. Meng K, Xiao X, Wei W, et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater 2022;34:e2109357.
35. Claver U, Zhao G. Recent progress in flexible pressure sensors based electronic skin. Adv Eng Mater 2021;23:2001187.
36. Zhang S, Li S, Xia Z, Cai K. A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 2020;8:852-62.
37. Zhang J, Wei S, Liu C, et al. Porous nanocomposites with enhanced intrinsic piezoresistive sensitivity for bioinspired multimodal tactile sensors. Microsyst Nanoeng 2024;10:19.
38. Duan L, Spoerk M, Wieme T, et al. Designing formulation variables of extrusion-based manufacturing of carbon black conductive polymer composites for piezoresistive sensing. Compos Sci Technol 2019;171:78-85.
39. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 2019;11:6685-704.
40. Zheng S, Wu X, Huang Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Compos Sci Technol 2020;197:108255.
41. Li K, Yang W, Yi M, Shen Z. Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Mater Struct 2021;30:085027.
42. Zhai Y, Yu Y, Zhou K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem Eng J 2020;382:122985.
43. Zheng Y, Xu H, Lou Z, Wang L, Han W. Ti3C2Tx quantum dots/leaf veins based sensors with ultra-broadrange high sensitivity. J Phys D Appl Phys 2023;56:485402.
44. Oh J, Kim JO, Kim Y, et al. Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 2019;15:e1901744.
45. Sencadas V, Tawk C, Alici G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications. ACS Appl Mater Interfaces 2020;12:8761-72.
46. Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014;8:12020-9.
47. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.
48. Ha M, Lim S, Park J, Um D, Lee Y, Ko H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv Funct Mater 2015;25:2841-9.
49. Miao L, Wan J, Song Y, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl Mater Interfaces 2019;11:39219-27.
50. Park J, Kim J, Hong J, et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater 2018;10:163-76.
51. Baek J, Shan Y, Mylvaganan M, et al. Mold-free manufacturing of highly sensitive and fast-response pressure sensors through high-resolution 3D printing and conformal oxidative chemical vapor deposition polymers. Adv Mater 2023;35:e2304070.
52. Mishra RB, El-Atab N, Hussain AM, Hussain MM. Flexible capacitive pressure sensors: recent progress on flexible capacitive pressure sensors: from design and materials to applications (Adv. Mater. Technol. 4/2021). Adv Mater Technol 2021;6:2001023.
53. Wang H, Li Z, Liu Z, et al. Flexible capacitive pressure sensors for wearable electronics. J Mater Chem C 2022;10:1594-605.
54. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 2015;27:2433-9.
55. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 2011;6:788-92.
56. Li J, Li J, Tang Y, et al. Touchable gustation via a hoffmeister gel iontronic sensor. ACS Nano 2023;17:5129-39.
57. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J MaterSci Technol 2020;43:175-88.
58. Kang S, Lee J, Lee S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv Elect Mater 2016;2:1600356.
59. Tee BC, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Funct Mater 2014;24:5427-34.
60. Niu H, Gao S, Yue W, Li Y, Zhou W, Liu H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020;16:e1904774.
61. Yao G, Xu L, Cheng X, et al. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv Funct Mater 2020;30:1907312.
62. Zhu M, Lou M, Abdalla I, Yu J, Li Z, Ding B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 2020;69:104429.
63. Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022;2:20210112.
64. Meng X, Cai C, Luo B, et al. Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nanomicro Lett 2023;15:124.
65. Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy 2021;21:100786.
66. Jiang Y, Dong K, Li X, et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv Funct Mater 2021;31:2005584.
67. Ma M, Zhang Z, Zhao Z, et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 2019;66:104105.
68. Kwon SH, Zhang C, Jiang Z, Dong L. Textured nanofibers inspired by nature for harvesting biomechanical energy and sensing biophysiological signals. Nano Energy 2024;122:109334.
69. Yu Y, Zhao X, Ge H, Ye L. A self-powered piezoelectric Poly(vinyl alcohol)/Polyvinylidene fluoride fiber membrane with alternating multilayer porous structure for energy harvesting and wearable sensors. Compos Sci Technol 2024;247:110429.
70. Scheffler S, Poulin P. Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 2022;14:16961-82.
71. Ghosh SK, Mandal D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 2018;53:245-57.
72. Huang A, Zhu Y, Peng S, Tan B, Peng X. Improved energy harvesting ability of single-layer binary fiber nanocomposite membrane for multifunctional wearable hybrid piezoelectric and triboelectric nanogenerator and self-powered sensors. ACS Nano 2024;18:691-702.
73. Du H, Zhou H, Wang M, et al. Electrospun elastic films containing AgNW-bridged MXene networks as capacitive electronic skins. ACS Appl Mater Interfaces 2022;14:31225-33.
74. Wang H, Liu C, Li B, et al. Advances in carbon-based resistance strain sensors. ACS Appl Electron Mater 2023;5:674-89.
75. Zhao Y, Liu Y, Li Y, Hao Q. Development and application of resistance strain force sensors. Sensors 2020;20:5826.
76. Chen J, Yu Q, Cui X, et al. An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 2019;7:11710-30.
77. Zhou M, Yu Y, Zhou Y, Song L, Wang S, Na D. Graphene-based strain sensor with sandwich structure and its application in bowel sounds monitoring. RSC Adv 2022;12:29103-12.
78. Feng P, Yuan Y, Zhong M, et al. Integrated resistive-capacitive strain sensors based on polymer-nanoparticle composites. ACS Appl Nano Mater 2020;3:4357-66.
79. Chen J, Li H, Yu Q, et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos Sci Technol 2018;168:388-96.
80. Ha S, Kim J. Simple route to performance modulation of resistive strain sensor based on strain-engineered stretchable substrate with customized hard template. Compos Sci Technol 2022;217:109111.
81. Zhou Y, Zhan P, Ren M, et al. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl Mater Interfaces 2019;11:7405-14.
82. Na HR, Lee HJ, Jeon JH, et al. Vertical graphene on flexible substrate, overcoming limits of crack-based resistive strain sensors. npj Flex Electron 2022;6:2.
83. Qiao Y, Wang Y, Tian H, et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018;12:8839-46.
84. Chen Z, Yang Z, Yu T, et al. Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity. Compos Sci Technol 2023;232:109881.
85. Fan M, Wu L, Hu Y, et al. A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with ultrahigh sensitivity. Adv Compos Hybrid Mater 2021;4:1039-47.
86. Han X, Xiao W, Wen S, et al. High-performance stretchable strain sensor based on Ag nanoparticles sandwiched between two 3D-printed polyurethane fibrous textiles. Adv Elect Mater 2021;7:2001242.
87. Yang YF, Tao LQ, Pang Y, et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 2018;10:11524-30.
88. Kang D, Pikhitsa PV, Choi YW, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014;516:222-6.
89. Chen Q, Chen K, Wu M, et al. Tough and fatigue-resistant anisotropic hydrogels via fiber reinforcement and magnetic field induction. Sci China Mater 2023;66:4841-52.
90. Wang Q, Zhang Q, Wang G, Wang Y, Ren X, Gao G. Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl Mater Interfaces 2022;14:1921-8.
91. Chang X, Chen L, Chen J, Zhu Y, Guo Z. Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater 2021;4:435-50.
92. Lee CS, Hwang HS, Kim S, Fan J, Aghaloo T, Lee M. Inspired by nature: facile design of nanoclay-organic hydrogel bone sealant with multifunctional properties for robust bone regeneration. Adv Funct Mater 2020;30:2003717.
93. Afewerki S, Edlund U. Unlocking the power of multicatalytic synergistic transformation: toward environmentally adaptable organohydrogel. Adv Mater 2024;36:e2306657.
94. Xie J, Su F, Fan L, et al. Robust and stretchable Ti3C2Tx MXene/PEI conductive composite dual-network hydrogels for ultrasensitive strain sensing. Compos Part A Appl Sci Manuf 2024;176:107833.
95. Lei D, Xiao Y, Xi M, Jiang Y, Li Y. Thermochromic and conductive hydrogels with tunable temperature sensitivity for dual sensing of temperature and human motion. J Mater Chem C 2023;12:232-44.
96. Zhang X, Rong Y, Li H, et al. High tensile properties, wide temperature tolerance, and DLP-printable eutectogels for microarrays wearable strain sensors. Chem Eng J 2024;481:149004.
97. Kim J, Hwang GW, Song M, et al. A reversible, versatile skin-attached haptic interface platform with bioinspired interconnection architectures capable of resisting sweat and vibration. Adv Funct Mater 2024;34:2311167.
98. Gao X, Wang X, Fan X. Highly sensitive flexible strain sensor based on microstructured biphasic hydrogels for human motion monitoring. Front Mater Sci 2023;17:230665.
99. Lu Y, Qu X, Wang S, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res 2022;15:4421-30.
100. Li T, Wang Y, Li S, Liu X, Sun J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater 2020;32:e2002706.
101. Mao Y, Wang L, Wu Z, et al. Thermochromic optical/electrical hydrated ionogel with anti-freezing and self-healing ability for multimodal sensor. Compos Commun 2023;44:101769.
102. Chun S, Son W, Choi C, et al. Bioinspired hairy skin electronics for detecting the direction and incident angle of airflow. ACS Appl Mater Interfaces 2019;11:13608-15.
103. Ji B, Zhou Q, Chen G, et al. In situ assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure monitoring. J Mater Chem C 2020;8:15634-45.
104. Pang C, Lee GY, Kim TI, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 2012;11:795-801.
105. Yu H, Guo H, Wang J, et al. Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces. Adv Sci 2024;11:e2305883.
106. Zhu Y, Li Y, Xie D, et al. High-performance flexible tactile sensor enabled by multi-contact mechanism for normal and shear force measurement. Nano Energy 2023;117:108862.
107. Chen H, Song Y, Guo H, et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 2018;51:496-503.
108. Joh H, Lee SW, Seong M, Lee WS, Oh SJ. Engineering the charge transport of Ag nanocrystals for highly accurate, wearable temperature sensors through all-solution processes. Small 2017;13:1700247.
109. Jeon J, Lee HB, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater 2013;25:850-5.
110. Yamada S, Toshiyoshi H. Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces 2020;12:36449-57.
111. Ren X, Pei K, Peng B, et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv Mater 2016;28:4832-8.
112. Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater 2014;26:796-804.
113. Nag A, Simorangkir RB, Gawade DR, et al. Graphene-based wearable temperature sensors: a review. Mater Design 2022;221:110971.
114. Liu R, He L, Cao M, Sun Z, Zhu R, Li Y. Flexible temperature sensors. Front Chem 2021;9:539678.
115. Wang L, Zhu R, Li G. Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl Mater Interfaces 2020;12:1953-61.
116. Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 2017;6:1601371.
117. Li F, Xue H, Lin X, Zhao H, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl Mater Interfaces 2022;14:43844-52.
118. Zhang C, Zhou Y, Han H, Zheng H, Xu W, Wang Z. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors. ACS Nano 2021;15:1785-94.
119. Cao Z, Liu H, Jiang L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater Horiz 2020;7:912-8.
120. Li Z, Huang J, Zhou R, et al. Temperature decoupling of a hydrogel-based strain sensor under a dynamic temperature field. Adv Mater Technol 2023;8:2300404.
121. Jia H, He Y, Zhang X, Du W, Wang Y. Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Elect Mater 2015;1:1500029.
122. Ge G, Lu Y, Qu X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020;14:218-28.
123. Wang F, Chen J, Cui X, Liu X, Chang X, Zhu Y. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain. ACS Appl Mater Interfaces 2022;14:30268-78.
124. Zhang M, Duan Z, Zhang B, et al. Electrochemical humidity sensor enabled self-powered wireless humidity detection system. Nano Energy 2023;115:108745.
125. Gyu Son S, Jun Park H, Kim S, et al. Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor. Chem Eng J 2023;454:140443.
126. Yin F, Guo Y, Qiu Z, et al. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-contact sensing. Nano Energy 2022;101:107541.
127. Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens 2017;2:828-33.
128. Zhang D, Wang M, Tang M, et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res 2023;16:11938-58.
129. Wang Y, Hou S, Li T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Appl Mater Interfaces 2020;12:41896-904.
130. Gu L, Zhou D, Cao JC. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors 2016;16:833.
131. Boudaden J, Steinmaßl M, Endres HE, et al. Polyimide-based capacitive humidity sensor. Sensors 2018;18:1516.
132. Hou C, Tai G, Liu Y, Wu Z, Wu Z, Liang X. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J Mater Chem A 2021;9:13100-8.
133. Liu X, Hou C, Liu Y, et al. Borophene and BC2N quantum dot heterostructures: ultrasensitive humidity sensing and multifunctional applications. J Mater Chem A 2023;11:24789-99.
134. Xu C, Zheng Z, Lin M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors. ACS Appl Mater Interfaces 2020;12:35482-92.
135. Li T, Zhao T, Zhang H, et al. A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. npj Flex Electron 2024;8:3.
136. Chen L, Xu Y, Liu Y, et al. Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and humidity. ACS Appl Mater Interfaces 2023;15:24923-32.
137. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017;9:6246-53.
138. Duan Z, Yuan Z, Jiang Y, Yuan L, Tai H. Amorphous carbon material of daily carbon ink: emerging applications in pressure, strain, and humidity sensors. J Mater Chem C 2023;11:5585-600.
139. Wang W, Nayeem MOG, Wang H, et al. Gas-permeable highly sensitive nanomesh humidity sensor for continuous measurement of skin humidity. Adv Mater Technol 2022;7:2200479.
140. Jeong W, Song J, Bae J, Nandanapalli KR, Lee S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl Mater Interfaces 2019;11:44758-63.
141. Li T, Li L, Sun H, et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv Sci 2017;4:1600404.
142. Xu L, Zhai H, Chen X, et al. Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chem Eng J 2021;412:128639.
143. Niu G, Wang Z, Xue Y, et al. Pencil-on-paper humidity sensor treated with nacl solution for health monitoring and skin characterization. Nano Lett 2023;23:1252-60.
144. He J, Xiao P, Shi J, et al. High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem Mater 2018;30:4343-54.
145. Liu K, Wang M, Huang C, et al. Flexible bioinspired healable antibacterial electronics for intelligent human-machine interaction sensing. Adv Sci 2024;11:e2305672.
146. Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun 2021;12:1291.
147. Khatib M, Zohar O, Saliba W, Haick H. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv Mater 2020;32:e2000246.
148. Jun S, Kim SO, Lee H, et al. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. J Mater Chem A 2019;7:3101-11.
149. Liu R, Lai Y, Li S, et al. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 2022;95:107056.
151. Huynh TP, Sonar P, Haick H. Advanced materials for use in soft self-healing devices. Adv Mater 2017:29.
152. Han S, Chen S, Hu Z, et al. A near-infrared light-promoted self-healing photothermally conductive polycarbonate elastomer based on Prussian blue and liquid metal for sensors. J Colloid Interface Sci 2024;654:955-66.
153. Yeh C, Lin C, Han T, Xiao Y, Chen Y, Chou H. Disulfide bond and Diels-Alder reaction bond hybrid polymers with high stretchability, transparency, recyclability, and intrinsic dual healability for skin-like tactile sensing. J Mater Chem A 2021;9:6109-16.
154. Xun X, Zhang Z, Zhao X, et al. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 2020;14:9066-72.
155. Gao Z, Lou Z, Han W, Shen G. A self-healable bifunctional electronic skin. ACS Appl Mater Interfaces 2020;12:24339-47.
156. Zhang Z, Wang L, Yu H, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl Mater Interfaces 2020;12:15657-66.
157. Wu J, Wu Z, Wei Y, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl Mater Interfaces 2020;12:19069-79.
158. Liao H, Guo X, Wan P, Yu G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv Funct Mater 2019;29:1904507.
159. Liu J, Zhang L, Wang N, Zhao H, Li C. Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with damage detection and program-controlled autonomic repair. Nano Energy 2022;96:107108.
160. Wei P, Chen T, Chen G, et al. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl Mater Interfaces 2020;12:3068-79.
161. Chen X, Sun P, Tian H, et al. Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer. J Mater Chem C 2022;10:1039-47.
162. Wang S, Bi S, Zhang L, Liu R, Wang H, Gu J. Skin-inspired antibacterial conductive hydrogels customized for wireless flexible sensor and collaborative wound healing. J Mater Chem A 2023;11:14096-107.
163. Pan X, Wang Q, Guo R, et al. An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J Mater Chem A 2020;8:17498-506.
164. Liu Z, Wang Y, Ren Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz 2020;7:919-27.
165. Wang Y, Chang Q, Zhan R, et al. Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators. J Mater Chem A 2019;7:24814-29.
166. Cui X, Chen J, Zhu Y, Jiang W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem Eng J 2020;382:122823.
167. Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 2018;13:1057-65.
168. Li Y, Chen S, Wu M, Sun J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv Mater 2012;24:4578-82.
169. Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart eutectic gallium-indium: from properties to applications. Adv Mater 2023;35:e2203391.
170. Chen S, Fan S, Chan H, et al. Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare applications. Adv Funct Mater 2023:2309989.
171. Xu C, Ma B, Yuan S, Zhao C, Liu H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv Elect Mater 2020;6:1900721.
172. Guo R, Sun X, Yuan B, Wang H, Liu J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci 2019;6:1901478.
173. Yun G, Tang SY, Sun S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat Commun 2019;10:1300.
174. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.
175. Wang M, Rojas OJ, Ning L, et al. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels. Carbohydr Polym 2023;301:120330.
176. Chu K, Song BG, Yang H, et al. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for sustainable and flexible perovskite solar cells. Adv Funct Mater 2018;28:1800110.
177. Blaiszik BJ, Kramer SL, Grady ME, et al. Autonomic restoration of electrical conductivity. Adv Mater 2012;24:398-401.
178. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097-104.
179. Krisnadi F, Nguyen LL, Ankit, et al. Directed assembly of liquid metal-elastomer conductors for stretchable and self-healing electronics. Adv Mater 2020;32:e2001642.
180. Park S, Thangavel G, Parida K, Li S, Lee PS. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv Mater 2019;31:e1805536.
181. Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci Adv 2020;6:eabd0202.
182. Ren X, Song M, Jiang J, et al. Fire-retardant and thermal-insulating cellulose nanofibril aerogel modified by in situ supramolecular assembly of melamine and phytic acid. Adv Eng Mater 2022;24:2101534.
183. Wang Y, Yue Y, Cheng F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022;16:1734-58.
184. Sun X, Mao Y, Yu Z, Yang P, Jiang F. A biomimetic “salting out-alignment-locking” tactic to design strong and tough hydrogel. Adv Mater 2024:e2400084.
185. Mu C, Wang Y, Mei D, Wang S. Development of robotic hand tactile sensing system for distributed contact force sensing in robotic dexterous multimodal grasping. Int J Intell Robot Appl 2022;6:760-72.
186. Deng C, Tang W, Liu L, Chen B, Li M, Wang ZL. Self-powered insole plantar pressure mapping system. Adv Funct Mater 2018;28:1801606.
187. Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:25.
188. Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array architecture, and data acquisition method. Proc IEEE 2019;107:2065-83.
189. Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-9.
190. Wang C, Xia K, Zhang M, Jian M, Zhang Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl Mater Interfaces 2017;9:39484-92.
191. Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 2017;38:28-35.
192. Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H. Multimodal sensors with decoupled sensing mechanisms. Adv Sci 2022;9:e2202470.
193. Peng S, Wu S, Yu Y, Xia B, Lovell NH, Wang CH. Multimodal capacitive and piezoresistive sensor for simultaneous measurement of multiple forces. ACS Appl Mater Interfaces 2020;12:22179-90.
194. Ho DH, Sun Q, Kim SY, Han JT, Kim DH, Cho JH. Stretchable and multimodal all graphene electronic skin. Adv Mater 2016;28:2601-8.
195. Zhao XF, Wen XH, Sun P, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection. ACS Appl Mater Interfaces 2021;13:10428-36.
196. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.
197. Lin W, Wang B, Peng G, Shan Y, Hu H, Yang Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv Sci 2021;8:2002817.
198. Shin J, Jeong B, Kim J, et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 2020;32:e1905527.
199. Zhang J, Hu Y, Zhang L, Zhou J, Lu A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nanomicro Lett 2022;15:8.
200. Wang X, Tao Y, Zhao C, et al. Bionic-leaf vein inspired breathable anti-impact wearable electronics with health monitoring, electromagnetic interference shielding and thermal management. J Mater Sci Technol 2024;188:216-27.
201. Liu C, Zhao C, Wang Y, Wang H. Machine-learning-based calibration of temperature sensors. Sensors 2023;23:7347.
202. Wang M, Wang T, Luo Y, et al. Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv Funct Mater 2021;31:2008807.
203. Xu C, Song Y, Sempionatto JR, et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat Electron 2024;7:168-79.
204. Pyun KR, Kwon K, Yoo MJ, et al. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024;11:nwad298.
205. Xu C, Solomon SA, Gao W. Artificial intelligence-powered electronic skin. Nat Mach Intell 2023;5:1344-55.
206. Huang Q, Jiang Y, Duan Z, et al. Electrochemical self-powered strain sensor for static and dynamic strain detections. Nano Energy 2023;118:108997.
207. Dawar N, Kehtarnavaz N. Action detection and recognition in continuous action streams by deep learning-based sensing fusion. IEEE Sensors J 2018;18:9660-8.
208. Shen L, Liu M, Lu L, et al. Domain-engineered flexible ferrite membrane for novel machine learning based multimodal flexible sensing. Adv Mater Inter 2022;9:2101989.
209. Li N, Wang Z, Yang X, et al. Deep-learning-assisted thermogalvanic hydrogel e-skin for self-powered signature recognition and biometric authentication. Adv Funct Mater 2024;34:2314419.
210. Wang L, Liu J, Qi X, et al. Personal protective gloves with objects recognizing for rescuing in disaster. Chem Eng J 2023;477:146986.
211. Niu H, Li H, Zhang Q, Kim ES, Kim NY, Li Y. Intuition-and-tactile bimodal sensing based on artificial-intelligence-motivated all-fabric bionic electronic skin for intelligent material perception. Small 2024;20:e2308127.
212. Kim KK, Ha I, Kim M, et al. A deep-learned skin sensor decoding the epicentral human motions. Nat Commun 2020;11:2149.
213. Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S. Bioinspired multisensory neural network with crossmodal integration and recognition. Nat Commun 2021;12:1120.
214. Bai Z, Wang X, Zheng M, et al. Mechanically robust and transparent organohydrogel-based e-skin nanoengineered from natural skin. Adv Funct Mater 2023;33:2212856.
215. Gao Q, Sun F, Li Y, et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nanomicro Lett 2023;15:139.
216. Sun X, Zhu Y, Zhu J, Le K, Servati P, Jiang F. Tough and ultrastretchable liquid-free ion conductor strengthened by deep eutectic solvent hydrolyzed cellulose microfibers. Adv Funct Mater 2022;32:2202533.
217. Cho S, Han H, Park H, et al. Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flex Electron 2023;7:8.
218. Yin F, Niu H, Kim E, Shin YK, Li Y, Kim N. Advanced polymer materials-based electronic skins for tactile and non-contact sensing applications. InfoMat 2023;5:e12424.
219. Beker L, Matsuhisa N, You I, et al. A bioinspired stretchable membrane-based compliance sensor. Proc Natl Acad Sci U S A 2020;117:11314-20.
220. Tao K, Chen Z, Yu J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv Sci 2022;9:e2104168.
221. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot 2018;3:eaau6914.
222. Zhu L, Wang Y, Mei D, et al. Large-area hand-covering elastomeric electronic skin sensor with distributed multifunctional sensing capability. Adv Intell Syst 2022;4:2100118.
223. Zhang C, Liu S, Huang X, Guo W, Li Y, Wu H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 2019;62:164-70.
224. Zhang L, He J, Liao Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A 2019;7:26631-40.
225. Lu C, Wang X, Shen Y, et al. Skin-like transparent, high resilience, low hysteresis, fatigue-resistant cellulose-based eutectogel for self-powered e-skin and human-machine interaction. Adv Funct Mater 2024;34:2311502.
226. Liu W, Xiang F, Mei D, Wang Y. A flexible dual-mode capacitive sensor for highly sensitive touchless and tactile sensing in human-machine interactions. Adv Mater Technol 2024;9:2301685.
227. Osborn LE, Dragomir A, Betthauser JL, et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci Robot 2018;3:10.
228. Yang M, Cheng Y, Yue Y, et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv Sci 2022;9:e2200507.
229. Luo S, Zhou X, Tang X, et al. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 2021;80:105580.
230. Yang JY, Kumar A, Shaikh MO, et al. Biocompatible, antibacterial, and stable deep eutectic solvent-based ionic gel multimodal sensors for healthcare applications. ACS Appl Mater Interfaces 2023;15:55244-57.
231. Peng Z, Zhu C, Zhang X, Zhang L. Advancing the pressure sensing performance and biocompatible of conductive rGO/PEDOT/PDMS composite film for simple and efficient pressure sensor. Smart Mater Struct 2023;32:125020.
232. Wan S, Zhu Z, Yin K, et al. A highly skin-conformal and biodegradable graphene-based strain sensor. Small Methods 2018;2:1700374.
233. Wang Y, Zhang L, Lu A. Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J Mater Chem A 2020;8:13935-41.
234. Wang C, Hwang D, Yu Z, et al. User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 2013;12:899-904.
235. Zhang Z, Wang Y, Jia S, Fan C. Body-conformable light-emitting materials and devices. Nat Photon 2024;18:114-26.
236. Cheng Y, Li L, Meredith CH, et al. Photoluminescent humidity sensors based on droplet-enabled porous composite gels. ACS Mater Lett 2023;5:2074-83.
237. Tan D, Xu B, Chung KY, et al. Self-adhesive, detach-on-demand, and waterproof hydrophobic electronic skins with customized functionality and wearability. Adv Funct Mater 2024;34:2311457.
238. Lin J, Cai X, Liu Z, et al. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state. Adv Funct Mater 2020;30:2000398.
239. Pan X, Wang Q, Guo R, et al. An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels. J Mater Chem A 2019;7:4525-35.
240. Cai J, Li J, Chen X, Wang M. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem Eng J 2020;393:124805.
241. Wei W, Yi Y, Song J, Chen X, Li J, Li J. Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl Mater Interfaces 2022;14:13790-800.
242. Tan D, Xu B. Advanced interfacial design for electronic skins with customizable functionalities and wearability. Adv Funct Mater 2023;33:2306793.
243. Huang C, Chiu C. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Appl Electron Mater 2021;3:676-86.
244. Li C, Zhao W. Progress in the brain-computer interface: an interview with Bin He. Natl Sci Rev 2020;7:480-3.
245. Venkatesh, Kavya, Keerthi R, Ikshu B, Badarish IT. Neuralink and brain control machine. IJARSCT 2022;2. Available from: https://ijarsct.co.in/Paper3135.pdf. [Last accessed on 7 May 2024].