REFERENCES

1. Kaya T, Liu G, Ho J, et al. Wearable sweat sensors: background and current trends. Electroanalysis 2019;31:411-21.

2. Ye C, Wang M, Min J, et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat Nanotechnol 2024;19:330-7.

3. Song Y, Tay RY, Li J, et al. 3D-printed epifluidic electronic skin for machine learning - powered multimodal health surveillance. Sci Adv 2023;9:eadi6492.

4. Mukasa D, Wang M, Min J, et al. A computationally assisted approach for designing wearable biosensors toward non-invasive personalized molecular analysis. Adv Mater 2023;35:2212161.

5. Torrente-Rodríguez RM, Tu J, Yang Y, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2020;2:921-37.

6. Yang Y, Song Y, Bo X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 2020;38:217-24.

7. Lorestani F, Zhang X, Abdullah AM, et al. A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. Adv Funct Mater 2023;33:2306117.

8. Liu S, Yang DS, Wang S, et al. Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat 2023;5:e12270.

9. Tu J, Min J, Song Y, et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat Biomed Eng 2023;7:1293-306.

10. Gao F, Liu C, Zhang L, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst Nanoeng 2023;9:1.

11. Ji W, Zhu J, Wu W, et al. Wearable sweat biosensors refresh personalized health/medical diagnostics. Research 2021;2021:9757126.

12. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.

13. Sempionatto JR, Lasalde-Ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 2022;6:899-915.

14. Xu L, Zhou Z, Fan M, Fang X. Advances in wearable flexible electrochemical sensors for sweat monitoring: a mini-review. Int J Electrochem Sci 2023;18:13-9.

15. Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022;12:8691-707.

16. Nyein HYY, Bariya M, Tran B, et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun 2021;12:1823.

17. Tai LC, Liaw TS, Lin Y, et al. Wearable sweat band for noninvasive levodopa monitoring. Nano Lett 2019;19:6346-51.

18. Tai LC, Gao W, Chao M, et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv Mater 2018;30:1707442.

19. Friedel M, Thompson IAP, Kasting G, et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng 2023;7:1541-55.

20. Jadoon S, Karim S, Akram MR, et al. Recent developments in sweat analysis and its applications. Int J Anal Chem 2015;2015:164974.

21. Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020;49:7671-709.

22. Villiger M, Stoop R, Vetsch T, et al. Evaluation and review of body fluids saliva, sweat and tear compared to biochemical hydration assessment markers within blood and urine. Eur J Clin Nutr 2018;72:69-76.

23. Heikenfeld J, Jajack A, Feldman B, et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019;37:407-19.

24. Aslan R, Aydoğdu M, Bostancı Hİ, Ertaş H, Akgür SA. Development of analytical method for illegal substances in sweat and comparison of the effectiveness of sweat collection materials. Leg Med 2023;64:102264.

25. Nyein HY, Gao W, Shahpar Z, et al. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 2016;10:7216-24.

26. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron 2018;1:160-71.

27. Min J, Tu J, Xu C, et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem Rev 2023;123:5049-138.

28. Ghaffari R, Rogers JA, Ray TR. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens Actuators B Chem 2021;332:129447.

29. Zhou J, Men D, Zhang X. Progress in wearable sweat sensors and their applications. Chinese J Anal Chem 2022;50:87-96.

30. Zhang S, Tan R, Xu X, Iqbal S, Hu J. Fibers/textiles-based flexible sweat sensors: a review. ACS Mater Lett 2023;5:1420-40.

31. Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano 2023;17:5211-95.

32. Shen H, Xue L, Ma Y, Huang H, Chen L. Recent advances toward wearable sweat monitoring systems. Adv Mater Technol 2023;8:2200513.

33. Manjakkal L, Dervin S, Dahiya R. Correction: Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020;10:12734.

34. Kim J, Oh S, Yang DS, et al. A skin-interfaced, miniaturized platform for triggered induction, capture and colorimetric multicomponent analysis of microliter volumes of sweat. Biosens Bioelectron 2024;253:116166.

35. Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy autonomous sweat-based wearable systems. Adv Mater 2021;33:2100899.

36. Yin L, Sandhu SS, Liu R, et al. Wearable e-skin microgrid with battery-based, self-regulated bioenergy module for epidermal sweat sensing. Adv Energy Mater 2023;13:2203418.

37. Xiao G, Ju J, Li M, et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens Bioelectron 2023;235:115389.

38. Moonen EJ, Haakma JR, Peri E, Pelssers E, Mischi M, den Toonder JM. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. VIEW 2020;1:20200077.

39. Xing Z, Hui J, Lin B, Wu Z, Mao H. Recent advances in wearable sensors for the monitoring of sweat: a comprehensive tendency summary. Chemosensors 2023;11:470.

40. Clark KM, Ray TR. Recent advances in skin-interfaced wearable sweat sensors: opportunities for equitable personalized medicine and global health diagnostics. ACS Sens 2023;8:3606-22.

41. Qiao Y, Qiao L, Chen Z, Liu B, Gao L, Zhang L. Wearable sensor for continuous sweat biomarker monitoring. Chemosensors 2022;10:273.

42. Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal Chem 2020;131:116024.

43. Liu C, Xu T, Wang D, Zhang X. The role of sampling in wearable sweat sensors. Talanta 2020;212:120801.

44. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol 1997;82:336-41.

45. Ono E, Murota H, Mori Y, et al. Sweat glucose and GLUT2 expression in atopic dermatitis: implication for clinical manifestation and treatment. PLoS One 2018;13:e0195960.

46. Baker LB, Ungaro CT, Barnes KA, Nuccio RP, Reimel AJ, Stofan JR. Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment. Physiol Rep 2014;2:e12007.

47. Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci Adv 2020;6:eabe3929.

48. Brueck A, Iftekhar T, Stannard AB, Yelamarthi K, Kaya T. A real-time wireless sweat rate measurement system for physical activity monitoring. Sensors 2018;18:533.

49. Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014;10:3083-90.

50. Dai B, Li K, Shi L, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv Mater 2019;31:1904113.

51. Zhong B, Jiang K, Wang L, Shen G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv Sci 2022;9:e2103257.

52. Jain V, Ochoa M, Jiang H, Rahimi R, Ziaie B. A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification. Microsyst Nanoeng 2019;5:29.

53. Kabiri K, Zohuriaan-Mehr MJ. Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macro Mater Eng 2004;289:653-61.

54. Sempionatto JR, Moon JM, Wang J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens 2021;6:1875-83.

55. Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode. Anal Chem 2017;89:10224-31.

56. Wu CH, Ma HJH, Baessler P, Balanay RK, Ray TR. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis. Sci Adv 2023;9:eadg4272.

57. Zhang Y, Chen Y, Huang J, et al. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. Lab Chip 2020;20:2635-45.

58. Son J, Bae GY, Lee S, et al. Cactus-spine-inspired sweat-collecting patch for fast and continuous monitoring of sweat. Adv Mater 2021;33:2102740.

59. Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6:eaay9842.

60. Bandodkar AJ, Gutruf P, Choi J, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 2019;5:eaav3294.

61. Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci U S A 2017;114:4625-30.

62. Kim J, Jeerapan I, Imani S, et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens 2016;1:1011-9.

63. Xu G, Huang X, Shi R, et al. Triboelectric nanogenerator enabled sweat extraction and power activation for sweat monitoring. Adv Funct Mater 2024;34:2310777.

64. Hammond KB, Turcios NL, Gibson LE. Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis. J Pediatr 1994;124:255-60.

65. Yeung KK, Huang T, Hua Y, Zhang K, Yuen MMF, Gao Z. Recent advances in electrochemical sensors for wearable sweat monitoring: a review. IEEE Sensors J 2021;21:14522-39.

66. Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible textile-based sweat sensors for wearable applications. Biosensors 2023;13:127.

67. Naik AR, Zhou Y, Dey AA, et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2021;22:156-69.

68. Patterson MJ, Galloway SD, Nimmo MA. Variations in regional sweat composition in normal human males. Exp Physiol 2000;85:869-75.

69. Huang X, Liu Y, Zhou J, et al. Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. npj Flex Electron 2022;6:10.

70. Baker LB, Barnes KA, Anderson ML, Passe DH, Stofan JR. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J Sports Sci 2016;34:358-68.

71. Krabak BJ, Lipman GS, Waite BL, Rundell SD. Exercise-associated hyponatremia, hypernatremia, and hydration status in multistage ultramarathons. Wilderness Environ Med 2017;28:291-8.

72. Kim T, Yi Q, Hoang E, Esfandyarpour R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv Mater Technol 2021;6:2001021.

73. Takahashi A, Maeda K, Sasaki K, et al. Relationships of hyperchloremia with hypertension and proteinuria in patients with chronic kidney disease. Clin Exp Nephrol 2022;26:880-5.

74. Montes-García V, de Oliveira RF, Wang Y, et al. Harnessing selectivity and sensitivity in ion sensing via supramolecular recognition: a 3D hybrid gold nanoparticle network chemiresistor. Adv Funct Mater 2021;31:2008554.

75. Guinovart T, Bandodkar AJ, Windmiller JR, Andrade FJ, Wang J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013;138:7031-8.

76. Hu Y, Wang L, Li J, et al. Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat. Int J Smart Nano Mater 2023;14:406-19.

77. Gao W, Nyein HYY, Shahpar Z, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens 2016;1:866-74.

78. Kim J, de Araujo WR, Samek IA, et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem Commun 2015;51:41-5.

79. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.

80. Abrar MA, Dong Y, Lee PK, Kim WS. Bendable electro-chemical lactate sensor printed with silver nano-particles. Sci Rep 2016;6:30565.

81. Imani S, Bandodkar AJ, Mohan AMV, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 2016;7:11650.

82. Harvey CJ, LeBouf RF, Stefaniak AB. Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol In Vitro 2010;24:1790-6.

83. Liu YL, Liu R, Qin Y, et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal Chem 2018;90:13081-7.

84. Dang W, Manjakkal L, Navaraj WT, Lorenzelli L, Vinciguerra V, Dahiya R. Stretchable wireless system for sweat pH monitoring. Biosens Bioelectron 2018;107:192-202.

85. Sempionatto JR, Khorshed AA, Ahmed A, et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sens 2020;5:1804-13.

86. Xu Z, Liu Y, Lv M, Qiao X, Fan GC, Luo X. An anti-fouling wearable molecular imprinting sensor based on semi-interpenetrating network hydrogel for the detection of tryptophan in sweat. Anal Chim Acta 2023;1283:341948.

87. Sideris GA, Tsaramanidis S, Vyllioti AT, Njuguna N. The role of branched-chain amino acid supplementation in combination with locoregional treatments for hepatocellular carcinoma: systematic review and meta-analysis. Cancers 2023;15:926.

88. Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab 2018;15:33.

89. Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-based stressless cortisol sensing. Adv Mater 2021;33:2008465.

90. Kamat V, Yapell D, Acosta Y, Tezsezen E, Mujawar MA, Bhansali S. Molecular imprinted polymer-based FET sensor for sensing of sweat testosterone to monitor athletic performance. Meet Abstr 2022;MA2022-02:2291.

91. Churcher NK, Upasham S, Rice P, Bhadsavle S, Prasad S. Development of a flexible, sweat-based neuropeptide Y detection platform. RSC Adv 2020;10:23173-86.

92. Sonner Z, Wilder E, Heikenfeld J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015;9:031301.

93. Munje RD, Muthukumar S, Jagannath B, Prasad S. A new paradigm in sweat based wearable diagnostics biosensors using room temperature ionic liquids (RTILs). Sci Rep 2017;7:1950.

94. Marques-Deak A, Cizza G, Eskandari F, et al; Premenopausal, Osteoporosis Women, Alendronate, Depression Study Group. Measurement of cytokines in sweat patches and plasma in healthy women: validation in a controlled study. J Immunol Methods 2006;315:99-109.

95. Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells 2020;9:306.

96. Xiao J, Wang J, Luo Y, Xu T, Zhang X. Wearable plasmonic sweat biosensor for acetaminophen drug monitoring. ACS Sens 2023;8:1766-73.

97. Tai LC, Ahn CH, Nyein HYY, et al. Nicotine monitoring with a wearable sweat band. ACS Sens 2020;5:1831-7.

98. Xu C, Song Y, Sempionatto JR, et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat Electron 2024;7:168-79.

99. Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem 2019;12:1-22.

100. Ghaffari R, Yang DS, Kim J, et al. State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics. ACS Sens 2021;6:2787-801.

101. Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron 2021;4:302-12.

102. Ghaffari R, Choi J, Raj MS, et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv Funct Mater 2020;30:1907269.

103. Heng W, Yang G, Kim WS, Xu K. Emerging wearable flexible sensors for sweat analysis. Bio-des Manuf 2022;5:64-84.

104. Toi PT, Trung TQ, Dang TML, Bae CW, Lee NE. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl Mater Interfaces 2019;11:10707-17.

105. Saha T, Songkakul T, Knisely CT, et al. Wireless wearable electrochemical sensing platform with zero-power osmotic sweat extraction for continuous lactate monitoring. ACS Sens 2022;7:2037-48.

106. Huang X, Li J, Liu Y, et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-des Manuf 2022;5:201-9.

107. Parrilla M, Ortiz-Gómez I, Cánovas R, Salinas-Castillo A, Cuartero M, Crespo GA. Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal Chem 2019;91:8644-51.

108. Zhang X, Tang Y, Wu H, Wang Y, Niu L, Li F. Integrated aptasensor array for sweat drug analysis. Anal Chem 2022;94:7936-43.

109. Veeralingam S, Badhulika S. Two-dimensional metallic NiSe2 nanoclusters-based low-cost, flexible, amperometric sensor for detection of neurological drug carbamazepine in human sweat samples. Front Chem 2020;8:337.

110. Wang S, Liu M, Yang X, et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens Bioelectron 2022;210:114351.

111. Dautta M, Ayala-Cardona LF, Davis N, et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv Mater Technol 2023;8:2201187.

112. Zhang B, Li J, Zhou J, et al. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024;628:84-92.

113. Bandodkar AJ, Lee SP, Huang I, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat Electron 2020;3:554-62.

114. Brasier N, Sempionatto JR, Bourke S, et al. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat Biomed Eng 2024.

115. Sun X, Zhao C, Li H, et al. Wearable near-field communication sensors for healthcare: materials, fabrication and application. Micromachines 2022;13:784.

116. Cheng C, Li X, Xu G, et al. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosens Bioelectron 2021;172:112782.

117. Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11:444.

118. Heikenfeld J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 2016;28:1242-9.

119. Tasangtong B, Sirichan K, Hasoon C, Na Nongkhai P, Rodthongkum N, Sameenoi Y. Fabrication of biocompatible and biodegradable cloth-based sweat sensors using polylactic acid (PLA) via stencil transparent film-printing. Sensors Actuat B Chem 2024;408:135513.

120. Feng X, Ning Y, Wu Z, et al. Defect-enriched graphene nanoribbons tune the adsorption behavior of the mediator to boost the lactate/oxygen biofuel cell. Nanomaterials 2023;13:1089.

121. Shitanda I, Takamatsu K, Niiyama A, et al. High-power lactate/O2 enzymatic biofuel cell based on carbon cloth electrodes modified with MgO-templated carbon. J Power Sources 2019;436:226844.

122. Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J. Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed Engl 2013;52:7233-6.

123. Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron 2022;215:114565.

124. Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 2020;5:eaaz7946.

125. Shitanda I, Morigayama Y, Iwashita R, et al. Paper-based lactate biofuel cell array with high power output. J Power Sources 2021;489:229533.

126. Shitanda I, Hirano K, Loew N, Watanabe H, Itagaki M, Mikawa T. High-performance, two-step/Bi-enzyme lactate biofuel cell with lactate oxidase and pyruvate oxidase. J Power Sources 2021;498:229935.

127. Chen X, Yin L, Lv J, et al. Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Adv Funct Mater 2019;29:1905785.

128. Yin L, Moon J, Sempionatto JR, et al. A passive perspiration biofuel cell: high energy return on investment. Joule 2021;5:1888-904.

129. Bandodkar AJ, You J, Kim N, et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ Sci 2017;10:1581-9.

130. Yang Y, Su Y, Zhu X, Ye D, Chen R, Liao Q. Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/MWCNT-Modified bio-anode and polyvinyl alcohol hydrogel electrolyte. Biosens Bioelectron 2022;198:113833.

131. Escalona-villalpando R, Ortiz-ortega E, Bocanegra-ugalde J, Minteer SD, Ledesma-garcía J, Arriaga L. Clean energy from human sweat using an enzymatic patch. J Power Sources 2019;412:496-504.

132. Escalona-villalpando RA, Reid RC, Milton RD, Arriaga L, Minteer SD, Ledesma-garcía J. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J Power Sources 2017;342:546-52.

133. Hickey DP, Reid RC, Milton RD, Minteer SD. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 2016;77:26-31.

134. Han XF, Batool N, Wang WT, et al. Templated-assisted synthesis of structurally ordered intermetallic Pt3Co with ultralow loading supported on 3D porous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 2021;13:37133-41.

135. Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022;183:108052.

136. Macedo LJ, Santo AA, Sedenho GC, et al. Three-dimensional catalysis and the efficient bioelectrocatalysis beyond surface chemistry. J Catal 2021;401:200-5.

137. Wang J, Sun M, Pei X, et al. Flexible biofuel cell-in-A-tube (iezTube): an entirely self-contained biofuel cell for wearable green bio-energy harvesting. Adv Funct Mater 2022;32:2209697.

138. Yin S, Jin Z, Miyake T. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens Bioelectron 2019;141:111471.

139. Sun M, Gu Y, Pei X, et al. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy 2021;86:106061.

140. Su Y, Lu L, Zhou M. Wearable microbial fuel cells for sustainable self-powered electronic skins. ACS Appl Mater Interfaces 2022;14:8664-8.

141. Mohammadifar M, Tahernia M, Yang JH, Koh A, Choi S. Biopower-on-skin: electricity generation from sweat-eating bacteria for self-powered e-skins. Nano Energy 2020;75:104994.

142. Bae CW, Chinnamani MV, Lee EH, Lee N. Stretchable non-enzymatic fuel cell-based sensor patch integrated with thread-embedded microfluidics for self-powered wearable glucose monitoring. Adv Mater Inter 2022;9:2200492.

143. Eswaran M, Rahimi S, Pandit S, Chokkiah B, Mijakovic I. A flexible multifunctional electrode based on conducting PANI/Pd composite for non-enzymatic glucose sensor and direct alcohol fuel cell applications. Fuel 2023;345:128182.

144. Wang C, Shim E, Chang HK, Lee N, Kim HR, Park J. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosens Bioelectron 2020;169:112652.

145. Ortega L, Llorella A, Esquivel JP, Sabaté N. Self-powered smart patch for sweat conductivity monitoring. Microsyst Nanoeng 2019;5:3.

146. Ju J, Xiao G, Jian Y, et al. Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy 2023;109:108304.

147. Liu Y, Huang X, Zhou J, et al. Stretchable sweat-activated battery in skin-integrated electronics for continuous wireless sweat monitoring. Adv Sci 2022;9:e2104635.

148. Liu Y, Huang X, Zhou J, et al. Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy 2022;92:106755.

149. Wu M, Shi R, Zhou J, et al. Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. J Mater Chem A 2022;10:19662-70.

150. Zhao G, Park W, Huang X, et al. Soft, sweat-powered health status sensing and visualization system enabled by laser-fabrication. Adv Sensor Res 2023;2:2300070.

151. Xiao G, Ju J, Lu H, et al. A weavable and scalable cotton-yarn-based battery activated by human sweat for textile electronics. Adv Sci 2022;9:2103822.

152. Lv J, Thangavel G, Li Y, et al. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci Adv 2021;7:eabg8433.

153. Luo Z, Wang Y, Kou B, Liu C, Zhang W, Chen L. “Sweat-chargeable” on-skin supercapacitors for practical wearable energy applications. Energy Storage Mater 2021;38:9-16.

154. Manjakkal L, Pullanchiyodan A, Yogeswaran N, Hosseini ES, Dahiya R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Adv Mater 2020;32:1907254.

155. Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the limits of flexibility and stretchability of solar cells: a review. Adv Mater 2021;33:2101469.

156. Garland NT, Kaveti R, Bandodkar AJ. Biofluid-activated biofuel cells, batteries, and supercapacitors: a comprehensive review. Adv Mater 2023;35:2303197.

157. Yin L, Kim KN, Lv J, et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun 2021;12:1542.

158. Lv J, Jeerapan I, Tehrani F, et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ Sci 2018;11:3431-42.

159. Huang X, Liu Y, Park W, et al. Intelligent soft sweat sensors for the simultaneous healthcare monitoring and safety warning. Adv Healthc Mater 2023;12:2202846.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/