REFERENCES
1. Yang F, Lu C, Rao W. Liquid metals enabled advanced cryobiology: development and perspectives. Soft Sci 2024;4:9.
2. Guo Z, Gao X, Lu J, et al. Recent advances for liquid metals: synthesis, modification and bio-applications. J Mater Sci Technol 2023;143:153-68.
3. Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging liquid metal biomaterials: from design to application. Adv Mater 2022;34:e2201956.
4. Gao W, Wang Y, Wang Q, Ma G, Liu J. Liquid metal biomaterials for biomedical imaging. J Mater Chem B 2022;10:829-42.
5. Yi L, Liu J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 2017;62:415-40.
7. Tang R, Zhang C, Liu B, et al. Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording. Biosens Bioelectron 2022;216:114600.
8. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47.
9. Zhang X, Liu B, Gao J, et al. Liquid metal-based electrode array for neural signal recording. Bioengineering 2023;10:578.
10. Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv. [Preprint.] Apr 7, 2024 [accessed on 2024 Jun 4]. Available from: https://arxiv.org/abs/1404.5931.
11. Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and antimicrobial polymer nanocomplexes to enhance biocidal effects. Int J Mol Sci 2024;25:1256.
12. Shao Y, Luan Y, Hao C, Song J, Li L, Song F. Antimicrobial protection of two controlled release silver nanoparticles on simulated silk cultural relic. J Colloid Interface Sci 2023;652:901-11.
13. Mariadhas J, Jeeva Panchu S, Swart HC, et al. Microwave assisted green synthesis of Ag doped CuO NPs anchored on GO-sheets for high performance photocatalytic and antimicrobial applications. J Ind Eng Chem 2023;128:383-95.
14. Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater Today Bio 2023;20:100647.
15. Bozorgi A, Khazaei M, Bozorgi M, Sabouri L, Soleimani M, Jamalpoor Z. Bifunctional tissue-engineered composite construct for bone regeneration: the role of copper and fibrin. J Biomed Mater Res B Appl Biomater 2024;112:e35362.
16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981;391:85-100.
17. Mohanty A, Li Q, Tadayon MA, et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat Biomed Eng 2020;4:223-31.
18. Jackson N, Sridharan A, Anand S, Baker M, Okandan M, Muthuswamy J. Long-term neural recordings using MEMS based movable microelectrodes in the brain. Front Neuroeng 2010;3:10.
19. Won C, Jeong U, Lee S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv Funct Mater 2022;32:2205145.
20. Santhan A, Hwa K. Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material for epinephrine detection in biological real samples. Mater Today Chem 2023;27:101332.
21. Obaid A, Hanna ME, Wu YW, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv 2020;6:eaay2789.
22. Sharma R, Tathireddy P, Lee S, et al. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng 2011;25:1016-9.
23. Barz F, Livi A, Lanzilotto M, et al. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017;14:036010.
24. Szymanski LJ, Kellis S, Liu CY, et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng 2021;18:0460b9.
25. Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater 2018;30:e1802560.
26. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 2016;4:5349-57.
27. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv Funct Mater 2019;29:1907063.
28. Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Technol Sci 2018;61:1031-7.
29. Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 2000;51:293-306.
30. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016;1:16063.
31. Guan S, Wang J, Gu X, et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv 2019;5:eaav2842.
32. Liang Q, Xia X, Sun X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals. Adv Sci 2022;9:e2201059.
33. Murphy RNA, Elsayed H, Singh S, Dumville J, Wong JKF, Reid AJ. A quantitative systematic review of clinical outcome measure use in peripheral nerve injury of the upper limb. Neurosurgery 2021;89:22-30.
35. Geissler J, Stevanovic M. Management of large peripheral nerve defects with autografting. Injury 2019;50 Suppl 5:S64-7.
36. Boyd KU, Nimigan AS, Mackinnon SE. Nerve reconstruction in the hand and upper extremity. Clin Plast Surg 2011;38:643-60.
37. Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or biopsy. Microsurgery 2020;40:710-6.
38. Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology trends and translational tribulations. Front Bioeng Biotechnol 2022;10:863969.
39. Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JF. Peripheral nerve regeneration: current status and new strategies using polymeric materials. Adv Healthc Mater 2016;5:2732-44.
40. Groves MJ, Christopherson T, Giometto B, Scaravilli F. Axotomy-induced apoptosis in adult rat primary sensory neurons. J Neurocytol 1997;26:615-24.
42. Gao YB, Liu ZG, Lin GD, et al. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial. Neural Regen Res 2021;16:1652-9.
43. Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 2015;26:226.
44. Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve. ACS Nano 2020;14:16565-75.
45. Zhang H, Wang H, Wen B, Lu L, Zhao Y, Chai R. Ultrasound-responsive composited conductive silk conduits for peripheral nerve regeneration. Small Struct 2023;4:2300045.
46. Ahn HS, Hwang JY, Kim MS, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomater 2015;13:324-34.
47. Wang L, Lu C, Yang S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv 2020;6:eabc6686.
48. Alchagirov BB, Mozgovoi AG. The surface tension of molten gallium at high temperatures. High Temp 2005;43:791-2.
49. Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 2005;383:1009-13.
50. Deng Y, E E, Li J, Jiang Y, Mei S, Yu Y. Materials, fundamentals, and technologies of liquid metals toward carbon neutrality. Sci China Technol Sci 2023;66:1576-94.
51. Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res 2021;2:1093-103.
52. Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packaging 2011;133:041009.
53. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA. Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 2012;41:033101.
54. Liu T, Sen P, Kim C. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 2012;21:443-50.
55. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater 2018;20:1700781.
56. Hao Y, Gao J, Lv Y, Liu J. Low melting point alloys enabled stiffness tunable advanced materials. Adv Funct Mater 2022;32:2201942.
57. Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today 2020;20:100722.
58. Lawrence JG, Berhan LM, Nadarajah A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008;2:1230-6.
59. Guo Y, Jiang S, Grena BJB, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 2017;11:6574-85.
60. Sevil B, Zuhal K. Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene). Macromol Symp 2010;295:59-64.
61. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876-921.
62. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 2013;3:112117.
63. Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater 2015;27:7109-16.
64. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.
65. Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst 2000;9:171-80.
66. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3:e1601649.
67. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 2020;5:351-70.
68. Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 2014;4:4588.
69. Dudley HC, Levine MD. Studies of the toxic action of gallium. J Pharmacol Exp Ther 1949;95:487-93. Available from: https://jpet.aspetjournals.org/content/95/4/487.full. [Last accessed on 4 Jun 2024]
70. Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. Repurposing of gallium-based drugs for antibacterial therapy. Biofactors 2014;40:303-12.
71. Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6.
72. Liu H, Yu Y, Wang W, et al. Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a feasibility study. Biometals 2019;32:795-801.
73. Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J Micromech Microeng 2017;27:104002.
74. Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:2201924.
75. Khondoker MAH, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct 2016;25:093001.
76. Jackson N, Buckley J, Clarke C, Stam F. Manufacturing methods of stretchable liquid metal-based antenna. Microsyst Technol 2019;25:3175-84.
77. Dong R, Wang L, Hang C, et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 2021;17:e2006612.
78. Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc Mater 2023;12:e2202531.
79. Dong R, Liu X, Cheng S, et al. Highly stretchable metal-polymer conductor electrode array for electrophysiology. Adv Healthc Mater 2021;10:e2000641.
80. Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37-45.
81. Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications. Adv Healthc Mater 2022;11:e2102382.
82. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.
84. Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946-66.
85. Sim K, Rao Z, Ershad F, Yu C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv Mater 2020;32:e1902417.
86. Jiang C, Guo R. Liquid metal-based paper electronics: materials, methods, and applications. Sci China Technol Sci 2023;66:1595-616.
87. Zhuang Q, Yao K, Wu M, et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci Adv 2023;9:eadg8602.
88. Park Y, Jung J, Lee Y, Lee D, Vlassak JJ, Park Y. Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. npj Flex Electron 2022;6:81.
89. Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 2013;13:522-6.
90. Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 2013;3:3442.
91. Xing S, Liu Y. Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications. Biosens Bioelectron 2024;243:115795.
92. Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today 2021;22:100903.
93. Lv Y, Liu J. Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin-Huxley neuron model and Pennes bioheat equation. Forsch Ingenieurwes 2005;69:101-14.
94. Liu J. Cooling strategies and transport theories for brain hypothermia resuscitation. Front Energy Power Eng China 2007;1:32-57.
95. Jing L. Control of electrical signal transmission across the liquid circuits of biological network through freeze switch. Micronanoelectro Technol 2006. Available from: https://api.semanticscholar.org/CorpusID:113872910. [Last accessed on 4 Jun 2024]
96. Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol 2020;28:304-14.
97. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30.
98. Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid metal-based soft electronics for wearable healthcare. Adv Healthc Mater 2021;10:e2002280.
99. Chung WG, Jang J, Cui G, et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat Nanotechnol 2024;19:688-97.
100. Zhao G, Wu T, Wang R, et al. Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations. Sci Adv 2023;9:eadj5407.
101. Zhang X, Liu J, Deng Z. Bismuth-based liquid metals: advances, applications, and prospects. Mater Horiz 2024;11:1369-94.
102. Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater 2023;33:2210961.
103. Agno KC, Yang K, Byun SH, et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2023.