REFERENCES

1. Yang F, Lu C, Rao W. Liquid metals enabled advanced cryobiology: development and perspectives. Soft Sci 2024;4:9.

2. Guo Z, Gao X, Lu J, et al. Recent advances for liquid metals: synthesis, modification and bio-applications. J Mater Sci Technol 2023;143:153-68.

3. Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging liquid metal biomaterials: from design to application. Adv Mater 2022;34:e2201956.

4. Gao W, Wang Y, Wang Q, Ma G, Liu J. Liquid metal biomaterials for biomedical imaging. J Mater Chem B 2022;10:829-42.

5. Yi L, Liu J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 2017;62:415-40.

6. Gao S, Cui Z, Wang X, Sun X. Liquid metal E-tattoo. Sci China Technol Sci 2023;66:1551-75.

7. Tang R, Zhang C, Liu B, et al. Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording. Biosens Bioelectron 2022;216:114600.

8. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47.

9. Zhang X, Liu B, Gao J, et al. Liquid metal-based electrode array for neural signal recording. Bioengineering 2023;10:578.

10. Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv. [Preprint.] Apr 7, 2024 [accessed on 2024 Jun 4]. Available from: https://arxiv.org/abs/1404.5931.

11. Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and antimicrobial polymer nanocomplexes to enhance biocidal effects. Int J Mol Sci 2024;25:1256.

12. Shao Y, Luan Y, Hao C, Song J, Li L, Song F. Antimicrobial protection of two controlled release silver nanoparticles on simulated silk cultural relic. J Colloid Interface Sci 2023;652:901-11.

13. Mariadhas J, Jeeva Panchu S, Swart HC, et al. Microwave assisted green synthesis of Ag doped CuO NPs anchored on GO-sheets for high performance photocatalytic and antimicrobial applications. J Ind Eng Chem 2023;128:383-95.

14. Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater Today Bio 2023;20:100647.

15. Bozorgi A, Khazaei M, Bozorgi M, Sabouri L, Soleimani M, Jamalpoor Z. Bifunctional tissue-engineered composite construct for bone regeneration: the role of copper and fibrin. J Biomed Mater Res B Appl Biomater 2024;112:e35362.

16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981;391:85-100.

17. Mohanty A, Li Q, Tadayon MA, et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat Biomed Eng 2020;4:223-31.

18. Jackson N, Sridharan A, Anand S, Baker M, Okandan M, Muthuswamy J. Long-term neural recordings using MEMS based movable microelectrodes in the brain. Front Neuroeng 2010;3:10.

19. Won C, Jeong U, Lee S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv Funct Mater 2022;32:2205145.

20. Santhan A, Hwa K. Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material for epinephrine detection in biological real samples. Mater Today Chem 2023;27:101332.

21. Obaid A, Hanna ME, Wu YW, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv 2020;6:eaay2789.

22. Sharma R, Tathireddy P, Lee S, et al. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng 2011;25:1016-9.

23. Barz F, Livi A, Lanzilotto M, et al. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017;14:036010.

24. Szymanski LJ, Kellis S, Liu CY, et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng 2021;18:0460b9.

25. Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater 2018;30:e1802560.

26. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 2016;4:5349-57.

27. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv Funct Mater 2019;29:1907063.

28. Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Technol Sci 2018;61:1031-7.

29. Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 2000;51:293-306.

30. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016;1:16063.

31. Guan S, Wang J, Gu X, et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv 2019;5:eaav2842.

32. Liang Q, Xia X, Sun X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals. Adv Sci 2022;9:e2201059.

33. Murphy RNA, Elsayed H, Singh S, Dumville J, Wong JKF, Reid AJ. A quantitative systematic review of clinical outcome measure use in peripheral nerve injury of the upper limb. Neurosurgery 2021;89:22-30.

34. Bhandari PS. Management of peripheral nerve injury. J Clin Orthop Trauma 2019;10:862-6.

35. Geissler J, Stevanovic M. Management of large peripheral nerve defects with autografting. Injury 2019;50 Suppl 5:S64-7.

36. Boyd KU, Nimigan AS, Mackinnon SE. Nerve reconstruction in the hand and upper extremity. Clin Plast Surg 2011;38:643-60.

37. Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or biopsy. Microsurgery 2020;40:710-6.

38. Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology trends and translational tribulations. Front Bioeng Biotechnol 2022;10:863969.

39. Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JF. Peripheral nerve regeneration: current status and new strategies using polymeric materials. Adv Healthc Mater 2016;5:2732-44.

40. Groves MJ, Christopherson T, Giometto B, Scaravilli F. Axotomy-induced apoptosis in adult rat primary sensory neurons. J Neurocytol 1997;26:615-24.

41. Dahlin LB. The biology of nerve injury and repair. J Am Soc Surg Hand 2004;4:143-55.

42. Gao YB, Liu ZG, Lin GD, et al. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial. Neural Regen Res 2021;16:1652-9.

43. Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 2015;26:226.

44. Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve. ACS Nano 2020;14:16565-75.

45. Zhang H, Wang H, Wen B, Lu L, Zhao Y, Chai R. Ultrasound-responsive composited conductive silk conduits for peripheral nerve regeneration. Small Struct 2023;4:2300045.

46. Ahn HS, Hwang JY, Kim MS, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomater 2015;13:324-34.

47. Wang L, Lu C, Yang S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv 2020;6:eabc6686.

48. Alchagirov BB, Mozgovoi AG. The surface tension of molten gallium at high temperatures. High Temp 2005;43:791-2.

49. Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 2005;383:1009-13.

50. Deng Y, E E, Li J, Jiang Y, Mei S, Yu Y. Materials, fundamentals, and technologies of liquid metals toward carbon neutrality. Sci China Technol Sci 2023;66:1576-94.

51. Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res 2021;2:1093-103.

52. Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packaging 2011;133:041009.

53. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA. Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 2012;41:033101.

54. Liu T, Sen P, Kim C. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 2012;21:443-50.

55. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater 2018;20:1700781.

56. Hao Y, Gao J, Lv Y, Liu J. Low melting point alloys enabled stiffness tunable advanced materials. Adv Funct Mater 2022;32:2201942.

57. Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today 2020;20:100722.

58. Lawrence JG, Berhan LM, Nadarajah A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008;2:1230-6.

59. Guo Y, Jiang S, Grena BJB, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 2017;11:6574-85.

60. Sevil B, Zuhal K. Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene). Macromol Symp 2010;295:59-64.

61. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876-921.

62. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 2013;3:112117.

63. Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater 2015;27:7109-16.

64. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.

65. Lee, Chang-jin Kim. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst 2000;9:171-80.

66. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3:e1601649.

67. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 2020;5:351-70.

68. Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 2014;4:4588.

69. Dudley HC, Levine MD. Studies of the toxic action of gallium. J Pharmacol Exp Ther 1949;95:487-93. Available from: https://jpet.aspetjournals.org/content/95/4/487.full. [Last accessed on 4 Jun 2024]

70. Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. Repurposing of gallium-based drugs for antibacterial therapy. Biofactors 2014;40:303-12.

71. Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6.

72. Liu H, Yu Y, Wang W, et al. Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a feasibility study. Biometals 2019;32:795-801.

73. Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J Micromech Microeng 2017;27:104002.

74. Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:e2201924.

75. Khondoker MAH, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct 2016;25:093001.

76. Jackson N, Buckley J, Clarke C, Stam F. Manufacturing methods of stretchable liquid metal-based antenna. Microsyst Technol 2019;25:3175-84.

77. Dong R, Wang L, Hang C, et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 2021;17:e2006612.

78. Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc Mater 2023;12:e2202531.

79. Dong R, Liu X, Cheng S, et al. Highly stretchable metal-polymer conductor electrode array for electrophysiology. Adv Healthc Mater 2021;10:e2000641.

80. Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37-45.

81. Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications. Adv Healthc Mater 2022;11:e2102382.

82. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

83. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.

84. Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946-66.

85. Sim K, Rao Z, Ershad F, Yu C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv Mater 2020;32:e1902417.

86. Jiang C, Guo R. Liquid metal-based paper electronics: materials, methods, and applications. Sci China Technol Sci 2023;66:1595-616.

87. Zhuang Q, Yao K, Wu M, et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci Adv 2023;9:eadg8602.

88. Park Y, Jung J, Lee Y, Lee D, Vlassak JJ, Park Y. Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. npj Flex Electron 2022;6:81.

89. Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 2013;13:522-6.

90. Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 2013;3:3442.

91. Xing S, Liu Y. Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications. Biosens Bioelectron 2024;243:115795.

92. Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today 2021;22:100903.

93. Lv Y, Liu J. Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin-Huxley neuron model and Pennes bioheat equation. Forsch Ingenieurwes 2005;69:101-14.

94. Liu J. Cooling strategies and transport theories for brain hypothermia resuscitation. Front Energy Power Eng China 2007;1:32-57.

95. Jing L. Control of electrical signal transmission across the liquid circuits of biological network through freeze switch. Micronanoelectro Technol 2006. Available from: https://api.semanticscholar.org/CorpusID:113872910. [Last accessed on 4 Jun 2024]

96. Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol 2020;28:304-14.

97. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30.

98. Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid metal-based soft electronics for wearable healthcare. Adv Healthc Mater 2021;10:e2002280.

99. Chung WG, Jang J, Cui G, et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat Nanotechnol 2024;19:688-97.

100. Zhao G, Wu T, Wang R, et al. Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations. Sci Adv 2023;9:eadj5407.

101. Zhang X, Liu J, Deng Z. Bismuth-based liquid metals: advances, applications, and prospects. Mater Horiz 2024;11:1369-94.

102. Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater 2023;33:2210961.

103. Agno KC, Yang K, Byun SH, et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2023.

104. Chu XL, Song XZ, Li Q, et al. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022;17:2185-93.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/