REFERENCES

1. Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano 2023;17:5211-95.

2. Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018;2:687-95.

3. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.

4. Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X. Flexible inorganic bioelectronics. npj Flex Electron 2020;4:2.

5. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented reality. Adv Funct Mater 2021;31:2009602.

6. Ramasamy S, Balan A. Wearable sensors for ECG measurement: a review. Sens Rev 2018;38:412-9.

7. Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62.

8. Ferrari LM, Sudha S, Tarantino S, et al. Ultraconformable temporary tattoo electrodes for electrophysiology. Adv Sci 2018;5:1700771.

9. Yao S, Zhu Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 2016;68:1145-55.

10. Kireev D, Ameri SK, Nederveld A, et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat Protoc 2021;16:2395-417.

11. Wang Y, Yin L, Bai Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci Adv 2020;6:43.

12. Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst Nanoeng 2023;9:79.

13. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat Commun 2020;11:3823.

14. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

15. Jang KI, Li K, Chung HU, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894.

16. Wang Y, Gong S, Wang SJ, Simon GP, Cheng W. Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Mater Horiz 2016;3:208-13.

17. Wang Y, Gong S, Wang SJ, et al. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano 2018;12:9742-9.

18. Wei B, Wang Z, Guo H, et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep Phys Sci 2023;4:101335.

19. Li Y, Wang S, Zhang J, et al. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl Mater Interfaces 2022;14:13713-21.

20. Niu W, Tian Q, Liu Z, Liu X. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv Mater 2023;35:2304157.

21. Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal electrode for muscle theranostics. ACS Nano 2022;16:17168-78.

22. Deng J, Yuk H, Wu J, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater 2021;20:229-36.

23. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.

24. Ho MD, Ling Y, Yap LW, et al. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv Funct Mater 2017;27:1700845.

25. Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl Phys A 2019;125:714.

26. Koo JH, Jeong S, Shim HJ, et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 2017;11:10032-41.

27. Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun 2021;12:4880.

28. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020;11:4683.

29. Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018;30:1804327.

30. Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex Electron 2022;6:41.

31. Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 2020;14:5798-805.

32. Wang Y, Qiu Y, Ameri SK, et al. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. npj Flex Electron 2018;2:6.

33. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017;11:9614-35.

34. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.

35. Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020;20:3651.

36. Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuators B Chem 2018;277:250-60.

37. Gao Q, Sun F, Li Y, et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nanomicro Lett 2023;15:139.

38. Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv 2021;7:eabd3716.

39. Jung HC, Moon JH, Baek DH, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng 2012;59:1472-9.

40. Lee JH, Nam YW, Jung HC, Baek DH, Lee SH, Hong JS. Shear induced CNT/PDMS conducting thin film for electrode cardiogram (ECG) electrode. BioChip J 2012;6:91-8.

41. Lu L, Yang B, Liu J. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem Eng J 2020;400:125928.

42. Yang X, Wang S, Liu M, et al. All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring. Small 2022;18:2106477.

43. Oh TI, Yoon S, Kim TE, et al. Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Trans Biomed Circuits Syst 2013;7:204-11.

44. Wang Y, Lee S, Wang H, et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc Natl Acad Sci U S A 2021;118:e2111904118.

45. Yamagishi K, Takeoka S, Fujie T. Printed nanofilms mechanically conforming to living bodies. Biomater Sci 2019;7:520-31.

46. Nawrocki RA, Jin H, Lee S, Yokota T, Sekino M, Someya T. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv Funct Mater 2018;28:1803279.

47. Ferrari LM, Ismailov U, Badier JM, Greco F, Ismailova E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex Electron 2020;4:4.

48. Ha T, Tran J, Liu S, et al. A chest-laminated ultrathin and stretchable E-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv Sci 2019;6:1900290.

49. Yang J, Zhang Z, Zhou P, et al. Toward a new generation of permeable skin electronics. Nanoscale 2023;15:3051-78.

50. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol 2017;12:907-13.

51. Wang Y, Lee S, Yokota T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci Adv 2020;6:eabb7043.

52. Zhang JH, Li Z, Xu J, et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat Commun 2022;13:5839.

53. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater 2021;20:859-68.

54. Patel S, Ershad F, Lee J, et al. Drawn-on-skin sensors from fully biocompatible inks toward high-quality electrophysiology. Small 2022;18:2107099.

55. Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv 2022;8:eabo1396.

56. Cheng S, Lou Z, Zhang L, et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv Mater 2023;35:2206793.

57. Cheng J, You L, Cai X, et al. Fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and high ductility for wearable flexible sensors. ACS Appl Mater Interfaces 2022;14:26338-49.

58. Ma X, Shi X, Wang Y, et al. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors. Colloids Surf A Physicochem Eng Asp 2023;676:132272.

59. Li W, Liu Q, Zhang Y, et al. Biodegradable materials and green processing for green electronics. Adv Mater 2020;32:2001591.

60. Ghosh SK, Park J, Na S, Kim MP, Ko H. A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv Sci 2021;8:2005010.

61. Meng L, Fu Q, Hao S, Xu F, Yang J. Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring. Chem Eng J 2022;427:131999.

62. Ye G, Song D, Song J, Zhao Y, Liu N. A fully biodegradable and biocompatible ionotronic skin for transient electronics. Adv Funct Mater 2023;33:2303990.

63. Ma T, Lin Y, Ma X, Zhang J, Li D, Kong D. Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites. Nano Res 2023;16:10412-9.

64. Chen T, Ye G, Wu H, et al. Highly conductive and underwater stable ionic skin for all-day epidermal biopotential monitoring. Adv Funct Mater 2022;32:2206424.

65. Tang M, Zheng P, Wang K, et al. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. J Mater Chem A 2019;7:27278-88.

66. Huang X, Chen C, Ma X, et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes. Adv Funct Mater 2023;33:2302846.

67. Wang Y, Haick H, Guo S, et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022;51:3759-93.

68. Majumder S, Chen L, Marinov O, Chen CH, Mondal T, Deen MJ. Noncontact wearable wireless ECG systems for long-term monitoring. IEEE Rev Biomed Eng 2018;11:306-21.

69. Yang H, Ji S, Chaturvedi I, et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring. ACS Mater Lett 2020;2:478-84.

70. Pan L, Cai P, Mei L, et al. A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv Mater 2020;32:2003723.

71. Wan C, Wu Z, Ren M, et al. In situ formation of conductive epidermal electrodes using a fully integrated flexible system and injectable photocurable ink. ACS Nano 2023;17:10689-700.

72. Jiang Y, Ji S, Sun J, et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023;614:456-62.

73. Ji S, Wan C, Wang T, et al. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv Mater 2020;32:2001496.

74. Sun C, Luo J, Jia T, et al. Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chem Eng J 2022;431:134012.

75. Ding Q, Wu Z, Tao K, et al. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater Horiz 2022;9:1356-86.

76. Xu Y, De la Paz E, Paul A, et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng 2023;7:1307-20.

77. Yuk H, Wu J, Zhao X. Hydrogel interfaces for merging humans and machines. Nat Rev Mater 2022;7:935-52.

78. Ouyang W, Lu W, Zhang Y, et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat Biomed Eng 2023;7:1252-69.

79. Tian L, Zimmerman B, Akhtar A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng 2019;3:194-205.

80. Chandra S, Li J, Afsharipour B, et al. Performance evaluation of a wearable tattoo electrode suitable for high-resolution surface electromyogram recording. IEEE Trans Biomed Eng 2021;68:1389-98.

81. Kim N, Lim T, Song K, Yang S, Lee J. Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles. ACS Appl Mater Interfaces 2016;8:21070-6.

82. Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol 2019;37:382-8.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/