REFERENCES

1. Yan JF, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine 2008;4:79-87.

2. Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine 2018;14:493-506.

3. Yuan F, Zhao G, Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe3O4-nanoparticle improved intracellular ice formation and cell dehydration. Oncotarget 2017;8:92561-77.

4. Khademi R, Mohebbi-kalhori D, Razminia A. Thermal analysis of a tumorous vascular tissue during pulsed-cryosurgery and nano-hyperthermia therapy: finite element approach. Int J Heat Mass Tran 2019;137:1001-13.

5. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48:2053-108.

6. Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology 1999;38:169-75.

7. Muldrew K, Rewcastle J, Donnelly BJ, et al. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology 2001;42:182-9.

8. Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J. Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 2010;61:280-8.

9. Wang CL, Teo KY, Han B. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology 2008;57:52-9.

10. Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine 2012;8:1233-41.

11. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 2012;22:24610-7.

12. Ye P, Kong Y, Chen X, et al. Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells. Oncotarget 2017;8:11389-99.

13. Yu TH, Liu J, Zhou YX. Selective freezing of target biological tissues after injection of solutions with specific thermal properties. Cryobiology 2005;50:174-82.

14. Choi B, Choi H, Yu B, Kim DH. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy using radiation-responsive splintery metallic nanocarriers. ACS Nano 2020;14:13115-26.

15. Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8:543-57.

16. Giwa S, Lewis JK, Alvarez L, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 2017;35:530-42.

17. Pal R, Mamidi MK, Das AK, Bhonde R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol 2012;86:651-61.

18. Fahy GM, Wowk B, Wu J, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 2004;48:157-78.

19. Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Tran 2018;23:353-60.

20. Morris GJ, Goodrich M, Acton E, Fonseca F. The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation. Cryobiology 2006;52:323-34.

21. Luyet B. On the possible biological significance of some physical changes encountered in the cooling and the rewarming of aqueous solutions. In: Cellular Injury and Resistance in Freezing Organisms: proceedings. 1967;2:1-20. Available from: http://hdl.handle.net/2115/20405. [Last accessed on 30 Nov 2023]

22. Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001;410:259-67.

23. Han Z, Sharma A, Gao Z, et al. Diffusion limited cryopreservation of tissue with radiofrequency heated metal forms. Adv Healthc Mater 2020;9:2000796.

24. Manuchehrabadi N, Gao Z, Zhang JJ, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 2017;9:eaah4586.

25. Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 2017;11:7869-78.

26. Manuchehrabadi N, Shi M, Roy P, et al. Ultrarapid inductive rewarming of vitrified biomaterials with thin metal forms. Ann Biomed Eng 2018;46:1857-69.

27. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 2006;36:609-62.

28. Rao W, Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minim Invasive Ther Allied Technol 2008;17:43-9.

29. Rao W, Liu J. Injectable liquid alkali alloy based-tumor thermal ablation therapy. Minim Invasive Ther Allied Technol 2009;18:30-5.

30. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073-111.

31. Jia X, Liu B, Li S, et al. High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid metal inclusions. J Mater Sci 2022;57:11026-45.

32. Li J, Ma Q, Gao S, et al. Liquid bridge: liquid metal bridging spherical BN largely enhances the thermal conductivity and mechanical properties of thermal interface materials. J Mater Chem C 2022;10:6736-43.

33. Zhang XD, Zhang ZT, Wang HZ, Cao BY. Thermal interface materials with high thermal conductivity and low young’s modulus using a solid-liquid metal codoping strategy. ACS Appl Mater Interfaces 2023;15:3534-42.

34. Wang D, Ye J, Bai Y, et al. Liquid metal combinatorics toward materials discovery. Adv Mater 2023;35:2303533.

35. Tang J, Lambie S, Meftahi N, et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat Nanotechnol 2021;16:431-9.

36. Idrus-Saidi SA, Tang J, Lambie S, et al. Liquid metal synthesis solvents for metallic crystals. Science 2022;378:1118-24.

37. Kang M, Saucer TW, Warren MV, et al. Surface plasmon resonances of Ga nanoparticle arrays. Appl Phys Lett 2012;101:081905.

38. Qi Y, Jin T, Yuan K, You J, Shen C, Xie K. Chemically stable polypyrrole-modified liquid metal nanoparticles with the promising photothermal conversion capability. J Mater Sci Technol 2022;127:144-52.

39. Hu JJ, Liu MD, Gao F, et al. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. Biomaterials 2019;217:119303.

40. Sun X, Sun M, Liu M, et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale 2019;11:2655-67.

41. Liu T, Song Y, Huang Z, et al. Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer. Colloid Surface B 2021;207:112023.

42. Ding XL, Liu MD, Cheng Q, et al. Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy. Biomaterials 2022;281:121369.

43. Wang D, Rao W. Alginate sponge assisted instantize liquid metal nanocomposite for photothermo-chemotherapy. Appl Mater Today 2022;29:101583.

44. Chen S, Wang HZ, Zhao RQ, Rao W, Liu J. Liquid metal composites. Matter 2020;2:1446-80.

45. Delmas T, Piraux H, Couffin AC, et al. How to prepare and stabilize very small nanoemulsions. Langmuir 2011;27:1683-92.

46. Yamaguchi A, Mashima Y, Iyoda T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew Chem Int Ed Engl 2015;54:12809-13.

47. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017;8:15432.

48. Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 2019;15:1804838.

49. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interfaces 2018;5:1800571.

50. Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci 2017;4:1700024.

51. Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces 2017;9:35977-87.

52. Zhao R, Guo R, Xu X, Liu J. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl Mater Interfaces 2020;12:36723-30.

53. Hou Y, Zhang P, Wang D, Liu J, Rao W. Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma therapy. ACS Appl Mater Interfaces 2020;12:27984-93.

54. Park YG, Min H, Kim H, Zhexembekova A, Lee CY, Park JU. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett 2019;19:4866-72.

55. Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces 2020;12:14125-35.

56. Wang X, Yao W, Guo R, et al. Soft and moldable mg-doped liquid metal for conformable skin tumor photothermal therapy. Adv Healthc Mater 2018;7:1800318.

57. Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale 2021;13:8817-36.

58. Li X, Cao L, Xiao B, et al. Superelongation of liquid metal. Adv Sci 2022;9:2105289.

59. Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater 2019;31:1904309.

60. Kim H, Lee K, Oh JW, et al. Shape-deformable and locomotive MXene (Ti3C2Tx)-encapsulated magnetic liquid metal for 3D-motion-adaptive synapses. Adv Funct Mater 2023;33:2210385.

61. Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005;109:13857-70.

62. Lin Y, Liu Y, Genzer J, Dickey MD. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem Sci 2017;8:3832-7.

63. Li Z, Zhang H, Wang D, et al. Reconfigurable assembly of active liquid metal colloidal cluster. Angew Chem Int Ed Engl 2020;59:19884-8.

64. Wang D, Gao C, Wang W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 2018;12:10212-20.

65. Sun X, Guo R, Yuan B, et al. Low-temperature triggered shape transformation of liquid metal microdroplets. ACS Appl Mater Interfaces 2020;12:38386-96.

66. Hou Y, Qiao Y, Zhang D, et al. Numerical simulation for treatment of hypothermia based on vascular interventional direct heating system. J Therm Biol 2018;76:29-37.

67. Deng Y, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat Mass Transfer 2010;46:1327-34.

68. Luo M, Liu J. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices. Front Energy 2013;7:479-86.

69. Wang L, Zhang XD, Liu J, Zhou YX. Heat dissipation system based on electromagnetic-driven rotational flow of liquid metal coolant. J Thermal Sci Eng Appl 2021;13:061023.

70. Deng Y, Zhang M, Jiang Y, Liu J. Two-stage multichannel liquid-metal cooling system for thermal management of high-heat-flux-density chip array. Energy Convers Manag 2022;259:115591.

71. Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 2012;107:701-8.

72. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv Funct Mater 2019;29:1907063.

73. Fan P, Sun Z, Wang Y, et al. Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Adv 2018;8:16232-42.

74. Panhwar F, Chen Z, Hossain SMC, et al. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale 2018;10:11760-74.

75. Cao Y, Chang T, Fang C, Zhang Y, Liu H, Zhao G. Inhibition effect of Ti3C2Tx MXene on ice crystals combined with laser-mediated heating facilitates high-performance cryopreservation. ACS Nano 2022;16:8837-50.

76. Zhan T, Liu K, Yang J, Dang H, Chen L, Xu Y. Fe3O4 nanoparticles with carboxylic acid functionality for improving the structural integrity of whole vitrified rat kidneys. ACS Appl Nano Mater 2021;4:13552-61.

77. Tian C, Shen L, Gong C, Cao Y, Shi Q, Zhao G. Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat Commun 2022;13:7515.

78. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578-86.

79. Hu JJ, Liu MD, Chen Y, et al. Immobilized liquid metal nanoparticles with improved stability and photothermal performance for combinational therapy of tumor. Biomaterials 2019;207:76-88.

80. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066.

81. Han Z, Rao JS, Gangwar L, et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat Commun 2023;14:3407.

82. Wang D, Xie W, Gao Q, et al. Non-magnetic injectable implant for magnetic field-driven thermochemotherapy and dual stimuli-responsive drug delivery: transformable liquid metal hybrid platform for cancer theranostics. Small 2019;15:1900511.

83. Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces 2018;10:17448-54.

84. Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J Micromech Microeng 2017;27:104002.

85. Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Adv Funct Materials 2020;30:2003359.

86. Yan J, Zhang X, Liu Y, et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Res 2019;12:1313-20.

87. Hou Y, Lu C, Dou M, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater 2020;102:403-15.

88. Zhang C, Tang J, Xie W, et al. Mechanistic observation of interactions between macrophages and inorganic particles with different densities. Small 2023;19:2204781.

89. Yang N, Li W, Gong F, et al. Injectable nonmagnetic liquid metal for eddy-thermal ablation of tumors under alternating magnetic field. Small Methods 2020;4:2000147.

90. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 2014;28:1317-30.

91. Wang X, Li X, Duan M, et al. Endosomal escapable cryo-treatment-driven membrane-encapsulated Ga liquid-metal transformer to facilitate intracellular therapy. Matter 2022;5:219-36.

92. Zhang X, Tian J, Zhao L, et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. Eur J Radiol 2012;81:3354-62.

93. Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6.

94. Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy. Small 2020;16:1903421.

95. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.

96. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255-8.

97. Zhang Y, Liu MD, Li CX, Li B, Zhang XZ. Tumor cell membrane-coated liquid metal nanovaccine for tumor prevention. Chin J Chem 2020;38:595-600.

98. Yakkala C, Chiang CLL, Kandalaft L, Denys A, Duran R. Cryoablation and immunotherapy: an enthralling synergy to confront the tumors. Front Immunol 2019;10:2283.

99. Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacol Rev 1998;50:665-82. Available from: https://pharmrev.aspetjournals.org/content/50/4/665. [Last accessed on 30 Nov 2023].

100. Clausen J, Edeling CJ, Fogh J. 67Ga binding to human-serum proteins and tumor components. Cancer Res 1974;34:1931-7. Available from: https://aacrjournals.org/cancerres/article/34/8/1931/480195. [Last accessed on 30 Nov 2023].

101. Harris WR. Thermodynamics of gallium complexation by human lactoferrin. Biochemistry 1986;25:803-8.

102. Weiner RE. Role of phosphate-containing compounds in the transfer of indium-111 and gallium-67 from transferrin to ferritin. J Nucl Med 1989;30:70-9. Available from: https://jnm.snmjournals.org/content/30/1/70. [Last accessed on 30 Nov 2023].

103. Chitambar CR. Gallium and its competing roles with iron in biological systems. Biochim Biophys Acta 2016;1863:2044-53.

104. Chitambar CR, Seligman PA. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium. J Clin Invest 1986;78:1538-46.

105. Hedley DW, Tripp EH, Slowiaczek P, Mann GJ. Effect of gallium on DNA-synthesis by human T-cell lymphoblasts. Cancer Res 1988;48:3014-8. Available from: https://aacrjournals.org/cancerres/article/48/11/3014/492615. [Last accessed on 30 Nov 2023].

106. Chitambar CR, Al-Gizawiy MM, Alhajala HS, et al. Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase. Mol Cancer Ther 2018;17:1240-50.

107. Chitambar CR, Purpi DP, Woodliff J, Yang M, Wereley JP. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J Pharmacol Exp Ther 2007;322:1228-36.

108. Feng H, Xu Y, Luo S, Dang H, Liu K, Sun WQ. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys. Cryobiology 2020;95:72-9.

109. Maathuis MHJ, Leuvenink HGD, Ploeg RJ. Perspectives in organ preservation. Transplantation 2007;83:1289-98.

110. Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: hypothermic preservation and cryopreservation. Acta Biomater 2021;131:97-116.

111. Niu X, Arthur PG, Jeffrey GP. Iron and oxidative stress in cold-initiated necrotic death of rat hepatocyte. Transplant Proc 2010;42:1563-8.

112. Zhang TJ, Hang J, Wen DX, Hang YN, Sieber FE. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate hypothermic cardiopulmonary bypass in rats. Anesth Analg 2006;102:1018-25.

113. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation - from bench to bedside. Nat Rev Gastroenterol Hepatol 2013;10:79-89.

114. Makkonen N, Hirvonen MR, Savolainen K, Lapinjoki S, Mönkkönen J. The effect of free gallium and gallium in liposomes on cytokine and nitric oxide secretion from macrophage-like cells in vitro. Inflamm Res 1995;44:523-8.

115. de Albuquerque Wanderley Sales V, Timóteo TRR, da Silva NM, et al. A systematic review of the anti-inflammatory effects of gallium compounds. Curr Med Chem 2021;28:2062-76.

116. Chitambar CR, Seigneuret MC, Matthaeus WG, Lum LG. Modulation of lymphocyte proliferation and immunoglobulin production by transferrin-gallium. Cancer Res 1989;49:1125-29. Available from: https://aacrjournals.org/cancerres/article/49/5/1125/494569. [Last accessed on 30 Nov 2023].

117. Chang KL, Liao WT, Yu CL, Lan CCE, Chang LW, Yu HS. Effects of gallium on immune stimulation and apoptosis induction in human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 2003;193:209-17.

118. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 2002;91:9-18.

119. Zhang C, Yang B, Biazik JM, et al. Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis. ACS Nano 2022;16:8891-903.

120. Bamoulid J, Staeck O, Halleck F, et al. The need for minimization strategies: current problems of immunosuppression. Transpl Int 2015;28:891-900.

121. Orosz CG, Wakely E, Bergese SD, et al. Prevention of murine cardiac allograft rejection with gallium nitrate. Comparison with anti-CD4 monoclonal antibody. Transplantation 1996;61:783-91.

122. Drobyski WR, Ul-haq R, Majewski D, Chitambar CR. Modulation of in vitro and in vivo T-cell responses by transferrin- gallium and gallium nitrate. Blood 1996;88:3056-64.

123. Li L, Chang H, Yong N, Li M, Hou Y, Rao W. Superior antibacterial activity of gallium based liquid metals due to Ga3+ induced intracellular ROS generation. J Mater Chem B 2021;9:85-93.

124. Divakarla SK, Das T, Chatterjee C, et al. Antimicrobial and anti-inflammatory gallium-defensin surface coatings for implantable devices. ACS Appl Mater Interfaces 2022;14:9685-96.

125. Truong VK, Hayles A, Bright R, et al. Gallium liquid metal: nanotoolbox for antimicrobial applications. ACS Nano 2023;17:14406-23.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/