REFERENCES

1. Roy P, Bolshakov AD. Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles. J Phys D Appl Phys 2020;53:465303.

2. Quesada-González D, Merkoçi A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 2018;47:4697-709.

3. Gu Y, Zhang T, Chen H, et al. Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res Lett 2019;14:263.

4. Ullah H, Wahab MA, Will G, et al. Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring. Biosensors 2022;12:630.

5. Zheng A, Qin Y, Zhang X, Xia Q, Xu X, Bai C. Tentacled snakes-inspired flexible pressure sensor for pain sensation monitoring. Smart Mater Struct 2022;31:045004.

6. Song D, Li X, Li XP, Jia X, Min P, Yu ZZ. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. J Colloid Interface Sci 2019;555:751-8.

7. Sun P, Wu D, Liu C. High-sensitivity tactile sensor based on Ti2C-PDMS sponge for wireless human-computer interaction. Nanotechnology 2021;32:295506.

8. Li S, Gu Y, Wu G, et al. A flexible piezoresistive sensor with highly elastic weave pattern for motion detection. Smart Mater Struct 2019;28:035020.

9. Li KH, Cheung YF, Choi HW. Tunable GaN photonic crystal and microdisk on PDMS flexible films. ACS Appl Electron Mater 2019;1:1112-9.

10. Ruiz JAR, Sanjuán AM, Vallejos S, García FC, García JM. Smart polymers in micro and nano sensory devices. Chemosensors 2018;6:12.

11. Sang S, Jing Z, Cheng Y, Ji C, Zhang Q, Dong X. Graphene and MXene-based sponge pressure sensor array for rectal model pressure detection. Macro Mater Eng 2021;306:2100251.

12. Xu B, Ye F, Chen R, Luo X, Chang G, Li R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram Int 2022;48:10220-6.

13. Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015;9:8933-41.

14. Pu L, Liu Y, Li L, et al. Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl Mater Interfaces 2021;13:47134-46.

15. Liu H, Chen X, Zheng Y, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 2021;31:2008006.

16. Dai Y, Wu X, Liu Z, Zhang HB, Yu ZZ. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos B Eng 2020;200:108263.

17. Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016;96:522-31.

18. Zhao Y, Song JG, Ryu GH, et al. Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 2018;10:9338-45.

19. Kenry, Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng 2016;2:16043.

20. Gao Y, Fang X, Tan J, Lu T, Pan L, Xuan F. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites. Nanotechnology 2018;29:235501.

21. Zhao Y, Ren M, Shang Y, et al. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos Sci Technol 2020;200:108448.

22. Pu JH, Zhao X, Zha XJ, et al. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 2020;74:104814.

23. Wang H, Zhou R, Li D, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021;15:9690-700.

24. Li X, Yang J, Yuan W, et al. Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Compos Commun 2021;23:100586.

25. Wei Q, Chen G, Pan H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing (Small Methods 2/2022). Small Methods 2022;6:2270012.

26. Yue Y, Liu N, Liu W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018;50:79-87.

27. Zhao L, Wang L, Zheng Y, et al. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021;84:105921.

28. Qin R, Li X, Hu M, Shan G, Seeram R, Yin M. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens Actuator A Phys 2022;338:113458.

29. Zhang R, Deng H, Valenca R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens Actuator A Phys 2012;179:83-91.

30. Huang J, Li D, Zhao M, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv Elect Mater 2019;5:1900241.

31. Sun J, Zhou W, Yang H, et al. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels. Chem Commun 2018;54:4923-6.

32. Hao Y, Gao J, Xu Z, Zhang N, Luo J, Liu X. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J Chem 2019;43:2797-803.

33. Wei Y, Chen S, Dong X, Lin Y, Liu L. Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 2017;113:395-403.

34. Choi Y, Kang J, Secor EB, et al. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits. Adv Funct Mater 2018;28:1802610.

35. Xu X, Chen Y, He P, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res 2021;14:2875-83.

36. Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl Phys A 2019;125:714.

37. Hosseinzadeh A, Bidmeshkipour S, Abdi Y, Arzi E, Mohajerzadeh S. Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl Surf Sci 2018;448:71-7.

38. Zhang R, Pan P, Dai Q, et al. Sensitive and wearable carbon nanotubes/carbon black strain sensors with wide linear ranges for human motion monitoring. J Mater Sci Mater Electron 2018;29:5589-96.

39. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater 2019;31:1901337.

40. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interfaces 2018;5:1800571.

41. Wang Y, Zhang P, Tan S, et al. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage electromagnetic pumps. Int Commun Heat Mass Transf 2019;104:15-22.

42. Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology 2021;32:092001.

43. Wang X, Lu C, Rao W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Therm Eng 2021;192:116937.

44. Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation - Basics and applications. Sol Energy Mater Sol Cells 2021;222:110925.

45. Chen S, Wang L, Zhang Q, Liu J. Liquid metal fractals induced by synergistic oxidation. Sci Bull 2018;63:1513-20.

46. Li DD, Liu TY, Ye J, Sheng L, Liu J. Liquid metal-enabled soft logic devices. Adv Intell Syst 2021;3:2000246.

47. Liu TY, Li DD, Ye J, Li Q, Sheng L, Liu J. An integrated soft jumping robotic module based on liquid metals. Adv Eng Mater 2021;23:2100515.

48. Shaini FJ, Shelton RM, Marquis PM, Shortall AC. In vitro evaluation of the effect of freshly mixed amalgam and gallium-based alloy on the viability of primary periosteal and osteoblast cell cultures. Biomaterials 2000;21:113-9.

49. Wang D, Lu C, Wang X, Rao W. In-situ synthesized liquid metal microgels. In: 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2021 Apr 25-29; Xiamen, China. IEEE; 2021. p. 469-73.

50. Hou Y, Zhang P, Wang D, Liu J, Rao W. Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma therapy. ACS Appl Mater Interfaces 2020;12:27984-93.

51. Kalantar-Zadeh K, Tang J, Daeneke T, et al. Emergence of liquid metals in nanotechnology. ACS Nano 2019;13:7388-95.

52. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.

53. Farrell ZJ, Jacob AR, Truong VK, et al. Compositional design of surface oxides in gallium-indium alloys. Chem Mater 2023;35:964-75.

54. Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater 2023;33:2210961.

55. Wang S, Liu C, Liu J, et al. Highly stable liquid metal conductors with superior electrical stability and tough interface bonding for stretchable electronics. ACS Appl Mater Interfaces 2023;15:22291-300.

56. Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces 2016;8:15459-65.

57. Afrin S, Haque E, Ren B, Ou JZ. Liquid elementary metals and alloys: synthesis, characterization, properties, and applications. Appl Mater Today 2023;31:101746.

58. Zhang ZP, Xia H. Nanoarchitectonics and applications of gallium-based liquid metal micro- and nanoparticles. ChemNanoMat 2023;9:e202300078.

59. Xu D, Cao J, Liu F, et al. Liquid metal based nano-composites for printable stretchable electronics. Sensors 2022;22:2516.

60. Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013;7:8366-78.

61. Zheng R, Peng Z, Fu Y, et al. A novel conductive core-shell particle based on liquid metal for fabricating real-time self-repairing flexible circuits. Adv Funct Mater 2020;30:1910524.

62. Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.

63. Liu L, Huang H, Wang X, He P, Yang J. Recent advances in printed liquid metals for wearable healthcare sensors: a review. J Phys D Appl Phys 2022;55:283002.

64. Zuraiqi K, Zavabeti A, Allioux FM, et al. Liquid metals in catalysis for energy applications. Joule 2020;4:2290-321.

65. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.

66. Xie W, Allioux FM, Ou JZ, Miyako E, Tang SY, Kalantar-Zadeh K. Gallium-based liquid metal particles for therapeutics. Trends Biotechnol 2021;39:624-40.

67. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073-111.

68. Lin ZD, Shu SC, Li A, et al. Preparation and mechanical property of graphene-reinforced copper matrix composites. J Inorg Mater 2019;34:469-77.

69. Jiang Q, Zhang S, Zhao M. Size-dependent melting point of noble metals. Mater Chem Phys 2003;82:225-7.

70. Bulmer JS, Kaniyoor A, Elliott JA. A meta-analysis of conductive and strong carbon nanotube materials. Adv Mater 2021;33:2008432.

71. Ma KQ, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A 2007;361:252-6.

72. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater 2018;20:1700781.

73. Tian L, Li Y, Webb RC, et al. Sensors: flexible and stretchable 3ω sensors for thermal characterization of human skin (Adv. Funct. Mater. 26/2017). Adv Funct Mater 2017;27:1770159.

74. Singh K, Sharma S, Shriwastava S, Singla P, Gupta M, Tripathi CC. Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors - a review. Mat Sci Semicon Proc 2021;123:105581.

75. Song M, Daniels KE, Kiani A, Rashid-Nadimi S, Dickey MD. Interfacial tension modulation of liquid metal via electrochemical oxidation. Adv Intell Syst 2021;3:2100024.

76. Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces 2017;9:35977-87.

77. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol 2019;4:1900183.

78. Ren L, Sun S, Casillas-Garcia G, et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv Mater 2018;30:1802595.

79. Li M, Chen D, Deng X, et al. Graded Mxene-doped liquid metal as adhesion interface aiming for conductivity enhancement of hybrid rigid-soft interconnection. ACS Appl Mater Interfaces 2023;15:14948-57.

80. Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces 2020;12:14125-35.

81. Zhu J, Xu Z, Ha S, et al. Gallium oxide for gas sensor applications: a comprehensive review. Materials 2022;15:7339.

82. Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170.

83. Afzal A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance enhancement strategies. J Materiomics 2019;5:542-57.

84. Fleischer M, Meixner H. Fast gas sensors based on metal oxides which are stable at high temperatures. Sens Actuators B Chem 1997;43:1-10.

85. Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 2015;15:15684-716.

86. Catalán-Gómez S, Redondo-Cubero A, Palomares FJ, Nucciarelli F, Pau JL. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 2017;28:405705.

87. Knight MW, Coenen T, Yang Y, et al. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 2015;9:2049-60.

88. Losurdo M, Yi C, Suvorova A, et al. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. ACS Nano 2014;8:3031-41.

89. Yang Y, Akozbek N, Kim TH, et al. Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and mueller matrix ellipsometry. ACS Photonics 2014;1:582-9.

90. Chen L, Wu M, Jing Q, et al. Gallium/gold composite microspheres fixed on a silicon substrate for surface enhanced Raman scattering. RSC Adv 2015;5:67134-40.

91. Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020;14:28-117.

92. Horák M, Čalkovský V, Mach J, Křápek V, Šikola T. Plasmonic properties of individual gallium nanoparticles. J Phys Chem Lett 2023;14:2012-9.

93. Gao X, Fan X, Zhang J. Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis. Mater Horiz 2021;8:3315-23.

94. Tang SY, Mitchell DRG, Zhao Q, et al. Phase separation in liquid metal nanoparticles. Matter 2019;1:192-204.

95. Hou Y, Chang H, Song K, et al. Coloration of liquid-metal soft robots: from silver-white to iridescent. ACS Appl Mater Interfaces 2018;10:41627-36.

96. Yang Y, Callahan JM, Kim TH, Brown AS, Everitt HO. Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett 2013;13:2837-41.

97. Wu PC, Khoury CG, Kim TH, et al. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles. J Am Chem Soc 2009;131:12032-3.

98. Pau JL, García-marín A, Hernández MJ, Lorenzo E, Piqueras J. Optical biosensing platforms based on Ga-graphene plasmonic structures on Cu, quartz and SiO2/Si substrates. Phys Status Solidi B 2016;253:664-70.

99. Cai S, Mayyas M, Saborio MG, et al. Gallium nitride formation in liquid metal sonication. J Mater Chem C 2020;8:16593-602.

100. Marín AG, García-Mendiola T, Bernabeu CN, et al. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale 2016;8:9842-51.

101. Chen X, Chen Q, Wu D, et al. Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for low-cost SERS substrates. J Raman Spectroscopy 2018;49:1301-10.

102. Alsaif MMYA, Haque F, Alkathiri T, et al. 3D visible-light-driven plasmonic oxide frameworks deviated from liquid metal nanodroplets. Adv Funct Mater 2021;31:2106397.

103. Li J, Qi C, Lian Z, et al. Cell-capture and release platform based on peptide-aptamer-modified nanowires. ACS Appl Mater Interfaces 2016;8:2511-6.

104. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47.

105. Yi L, Jin C, Wang L, Liu J. Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 2014;35:9789-801.

106. Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:2201924.

107. Krug HF, Wick P. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 2011;50:1260-78.

108. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012;64:129-37.

109. Kumar VB, Gedanken A, Kimmel G, Porat Z. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres. Ultrason Sonochem 2014;21:1166-73.

110. Creighton MA, Yuen MC, Susner MA, Farrell Z, Maruyama B, Tabor CE. Oxidation of gallium-based liquid metal alloys by water. Langmuir 2020;36:12933-41.

111. Adams WT 4th, Nolan MW, Ivanisevic A. Ga ion-enhanced and particle shape-dependent generation of reactive oxygen species in X-ray-irradiated composites. ACS Omega 2018;3:5252-9.

112. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mater Sci Eng R Rep 2019;138:1-35.

113. Schedle A, Samorapoompichit P, Rausch-Fan XH, et al. Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. J Dent Res 1995;74:1513-20.

114. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017;8:15432.

115. Tang SY, Qiao R, Lin Y, et al. Functional liquid metal nanoparticles produced by liquid-based nebulization. Adv Mater Technol 2019;4:1800420.

116. Sun X, Sun M, Liu M, et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale 2019;11:2655-67.

117. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066.

118. Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces 2018;10:17448-54.

119. Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J Occup Health 2003;45:137-9.

120. Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale 2021;13:8817-36.

121. Zhang Y, Guo Z, Zhu H, et al. Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced photoacoustic and photothermal performance. J Am Chem Soc 2022;144:6779-90.

122. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small 2020;16:1903391.

123. Yu F, Xu J, Li H, et al. Ga-In liquid metal nanoparticles prepared by physical vapor deposition. Prog Nat Sci Mater Int 2018;28:28-33.

124. Yarema M, Wörle M, Rossell MD, et al. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J Am Chem Soc 2014;136:12422-30.

125. Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal-elastomer conductors. ACS Appl Mater Interfaces 2022;14:37110-9.

126. Yamaguchi A, Mashima Y, Iyoda T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew Chem Int Ed Engl 2015;54:12809-13.

127. Lu H, Tang SY, Dong Z, et al. Dynamic temperature control system for the optimized production of liquid metal nanoparticles. ACS Appl Nano Mater 2020;3:6905-14.

128. Lin Y, Genzer J, Dickey MD. Attributes, Fabrication, and applications of gallium-based liquid metal particles. Adv Sci 2020;7:2000192.

129. Tang SY, Qiao R, Yan S, et al. Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small 2018;14:1800118.

130. Lin Y, Genzer J, Li W, Qiao R, Dickey MD, Tang SY. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions. Nanoscale 2018;10:19871-8.

131. Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 2019;15:1804838.

132. Finkenauer LR, Lu Q, Hakem IF, Majidi C, Bockstaller MR. Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets. Langmuir 2017;33:9703-10.

133. Wei Q, Sun M, Wang Z, et al. Surface engineering of liquid metal nanodroplets by attachable diblock copolymers. ACS Nano 2020;14:9884-93.

134. Cossio G, Yu ET. Zeta potential dependent self-assembly for very large area nanosphere lithography. Nano Lett 2020;20:5090-6.

135. Hu C, Sun Q, He P, et al. Smart adhesive patches of antibacterial performance based on polydopamine-modified Ga liquid metal nanodroplets. ACS Appl Nano Mater 2022;5:18349-56.

136. He B, Liu S, Zhao X, et al. Dialkyl dithiophosphate-functionalized gallium-based liquid-metal nanodroplets as lubricant additives for antiwear and friction reduction. ACS Appl Nano Mater 2020;3:10115-22.

137. Xu D, Hu J, Pan X, Sánchez S, Yan X, Ma X. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 2021;15:11543-54.

138. Wang P, Xie H, Guo F, et al. Thiadiazole dimer-functionalized liquid metal nanoparticles for anti-corrosion and friction reduction. ACS Appl Nano Mater 2023;6:5799-807.

139. Huang X, Xu T, Shen A, Davis TP, Qiao R, Tang SY. Engineering polymers via understanding the effect of anchoring groups for highly stable liquid metal nanoparticles. ACS Appl Nano Mater 2022;5:5959-71.

140. Tevis ID, Newcomb LB, Thuo M. Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). Langmuir 2014;30:14308-13.

141. Çınar S, Tevis ID, Chen J, Thuo M. Mechanical fracturing of core-shell undercooled metal particles for heat-free soldering. Sci Rep 2016;6:21864.

142. Li X, Wang Z, Dong G. Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-based lubricant additive. Tribol Int 2020;148:106349.

143. Hafiz SS, Labadini D, Riddell R, et al. Surfaces and interfaces of liquid metal core-shell nanoparticles under the microscope. Part Part Syst Charact 2020;37:1900469.

144. Cutinho J, Chang BS, Oyola-Reynoso S, et al. Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces. ACS Nano 2018;12:4744-53.

145. Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications. Adv Intell Syst 2022;4:2270059.

146. Yu L, Qi X, Liu Y, Chen L, Li X, Xia Y. Transportable, endurable, and recoverable liquid metal powders with mechanical sintering conductivity for flexible electronics and electromagnetic interference shielding. ACS Appl Mater Interfaces 2022;14:48150-60.

147. Zeng H, Du XW, Singh SC, et al. Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 2012;22:1333-53.

148. Im HG, Jin J, Ko JH, Lee J, Lee JY, Bae BS. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability. Nanoscale 2014;6:711-5.

149. Zeng X, He P, Hu M, et al. Copper inks for printed electronics: a review. Nanoscale 2022;14:16003-32.

150. Yu J, Xia J, Guan X, et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochimica Acta 2022;425:140721.

151. Lou Y, Liu H, Zhang J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem Eng J 2020;399:125732.

152. Xu C, Zheng Z, Lin M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors. ACS Appl Mater Interfaces 2020;12:35482-92.

153. Lei D, Zhang H, Liu N, et al. Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles. Nanotechnology 2021;32:505509.

154. Xu S, Zong Y, Ma J, Liu L. A multifunctional skin-like sensor based on liquid metal activated gelatin organohydrogel. Adv Mater Interfaces 2022;9:2201212.

155. Huang Y, Yang F, Liu S, Wang R, Guo J, Ma X. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021;2021:9847285.

156. Chi Y, Han J, Zheng J, et al. Insights into the interfacial contact and charge transport of gas-sensing liquid metal marbles. ACS Appl Mater Interfaces 2022;14:30112-23.

157. Schlingman K, D’amaral GM, Carmichael RS, Carmichael TB. Intrinsically conductive liquid metal-elastomer composites for stretchable and flexible electronics. Adv Mater Technol 2023;8:2200374.

158. Lopes PA, Fernandes DF, Silva AF, et al. Bi-phasic Ag-In-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics. ACS Appl Mater Interfaces 2021;13:14552-61.

159. Pan X, Guo D, He H. Novel conductive polymer composites based on CNTs/CNFs bridged liquid metal. J Phys D Appl Phys 2021;54:085401.

160. Lu Y, Lin Y, Chen Z, et al. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett 2017;17:2138-45.

161. Xu J, Wang Z, You J, et al. Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices. Chem Eng J 2020;392:123788.

162. Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater Interfaces 2020;12:50852-9.

163. Chiu SH, Baharfar M, Chi Y, et al. Exploring electrical conductivity of thiolated micro- and nanoparticles of gallium. Adv Intell Syst 2023;5:2200364.

164. Hou Y, Lu C, Dou M, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater 2020;102:403-15.

165. Idrus-Saidi SA, Tang J, Yang J, et al. Liquid metal-based route for synthesizing and tuning gas-sensing elements. ACS Sens 2020;5:1177-89.

166. Hoshyargar F, Khan H, Kalantar-zadeh K, O’Mullane AP. Generation of catalytically active materials from a liquid metal precursor. Chem Commun 2015;51:14026-9.

167. Liang S, Wang C, Li F, Song G. Supported Cu/W/Mo/Ni - liquid metal catalyst with core-shell structure for photocatalytic degradation. Catalysts 2021;11:1419.

168. Zhang W, Ou JZ, Tang SY, et al. Liquid metal/metal oxide frameworks. Adv Funct Mater 2014;24:3799-807.

169. Sivan V, Tang SY, O’Mullane AP, et al. Liquid metal marbles. Adv Funct Materials 2013;23:144-52.

170. Nucciarelli F, Bravo I, Vázquez L, Lorenzo E, Pau JL. Gallium nanoparticles colloids synthesis for UV bio-optical sensors. Optical Sensors 2017;10231:407-13.

171. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.

172. Zhang P, Wang Q, Guo R, et al. Self-assembled ultrathin film of CNC/PVA-liquid metal composite as a multifunctional Janus material. Mater Horiz 2019;6:1643-53.

173. Wu P, Zhou L, Lv S, Fu J, He Y. Self-sintering liquid metal ink with LAPONITE® for flexible electronics. J Mater Chem C 2021;9:3070-80.

174. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv Funct Mater 2018;28:1804197.

175. Liu Y, Wang Q, Bi S, Zhang W, Zhou H, Jiang X. Water-processable liquid metal nanoparticles by single-step polymer encapsulation. Nanoscale 2020;12:13731-41.

176. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 2018;10:28232-41.

177. Liu S, Kim SY, Henry KE, Shah DS, Kramer-Bottiglio R. Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions. ACS Appl Mater Interfaces 2021;13:28729-36.

178. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv 2021;7:eabg4041.

179. Ning C, Wei C, Sheng F, et al. Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Res 2023;16:7518-26.

180. Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today 2021;22:100903.

181. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 2014;116:1091-7.

182. Li BM, Reese BL, Ingram K, et al. Textile-integrated liquid metal electrodes for electrophysiological monitoring. Adv Healthc Mater 2022;11:2200745.

183. Hu Y, Hao X, Chen G, Bian J, Li M, Peng F. Self-standing, photothermal-actuating, and motion-monitoring janus films one-pot synthesized by green carboxymethyl glucomannan/liquid metal nanoinks. ACS Appl Mater Interfaces 2022;14:23717-25.

184. Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc Mater 2022;12:2202531.

185. Park K, Pyeon J, Jeong SH, Yoon YJ, Kim H. Avalanche coalescence of liquid metal particles for uniform flexible and stretchable electrodes. Adv Mater Interfaces 2022;9:2201693.

186. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite (Adv. Mater. 32/2022). Adv Mater 2022;34:2270236.

187. Liu Y, Yang L, Chen Q, et al. Deposition of vertically aligned Ag/Ag2S nanoflakes on EGaIn particles for humidity sensing. Chemistry 2022;28:e202200298.

188. Yang Y, Han J, Huang J, et al. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. Adv Funct Mater 2020;30:1909652.

189. Zhang Z, Tang L, Chen C, et al. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J Mater Chem A 2021;9:875-83.

190. Xu Y, Rothe R, Voigt D, et al. Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives. Nat Commun 2021;12:2407.

191. Chen B, Liu G, Wu M, et al. Liquid metal-based organohydrogels for wearable flexible electronics. Adv Mater Technol 2023;8:2201919.

192. Zhou L, Li Y, Xiao J, et al. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors. Anal Chem 2023;95:3811-20.

193. Dong Y, Wang C, Hu Z, et al. A sandwich-structure, low-temperature sensitive and recyclable liquid metal organic hydrogel for a wearable strain sensor. J Appl Polymer Sci 2022;139:e53174.

194. Liao M, Liao H, Ye J, Wan P, Zhang L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces 2019;11:47358-64.

195. Cheng J, Shang J, Yang S, Dou J, Shi X, Jiang X. Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics. Adv Funct Mater 2022;32:2200444.

196. Zhao B, Bai Z, Lv H, et al. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nanomicro Lett 2023;15:79.

197. Wang M, Feng X, Wang X, Hu S, Zhang C, Qi H. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles. J Mater Chem A 2021;9:24539-47.

198. Feng X, Wang C, Shang S, et al. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr Polym 2023;311:120786.

199. Liu S, Guo Q, Wang X, Li G, Ma X, Xu Z. Fabrication of liquid metal loaded polycaprolactone conductive film for biocompatible and flexible electronics. Biosens Bioelectron X 2022;11:100182.

200. Chen B, Cao Y, Li Q, et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat Commun 2022;13:1206.

201. Chen B, Wu M, Fang S, et al. Liquid metal-tailored PEDOT:PSS for noncontact flexible electronics with high spatial resolution. ACS Nano 2022;16:19305-18.

202. Lee GH, Lee YR, Kim H, et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun 2022;13:2643.

203. Cao J, Liang F, Li H, et al. Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction. InfoMat 2022;4:e12302.

204. Zhang C, Allioux FM, Rahim MA, et al. Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles. Chem Mater 2020;32:4808-19.

205. Sippel JM, Holden WE, Tilles SA, et al. Exhaled nitric oxide levels correlate with measures of disease control in asthma. J Allergy Clin Immunol 2000;106:645-50.

206. Yeung DKW, Griffith JF, Li AFW, Ma HT, Yuan J. Air pressure-induced susceptibility changes in vascular reactivity studies using BOLD MRI. J Magn Reson Imaging 2013;38:976-80.

207. Wang C, Li J, Fang Z, et al. Temperature-stress bimodal sensing conductive hydrogel-liquid metal by facile synthesis for smart wearable sensor. Macromol Rapid Commun 2022;43:2100543.

208. Kim S, Lee J. Indentation and temperature response of liquid metal/hydrogel composites. J Ind Eng Chem 2022;110:225-33.

209. Gutiérrez Y, Losurdo M, García-fernández P, et al. Gallium polymorphs: phase-dependent plasmonics. Adv Opt Mater 2019;7:1900307.

210. Losurdo M, Suvorova A, Rubanov S, Hingerl K, Brown AS. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles. Nat Mater 2016;15:995-1002.

211. Li X, Zhu P, Zhang S, et al. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. ACS Nano 2022;16:5909-19.

212. Wang S, Zhao X, Luo J, Zhuang L, Zou D. Liquid metal (LM) and its composites in thermal management. Compos Part A Appl Sci Manuf 2022;163:107216.

213. Reineck P, Lin Y, Gibson BC, Dickey MD, Greentree AD, Maksymov IS. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci Rep 2019;9:5345.

214. Qu X, Xue J, Liu Y, Rao W, Liu Z, Li Z. Fingerprint-shaped triboelectric tactile sensor. Nano Energy 2022;98:107324.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/