REFERENCES

1. Woods GA, Rommelfanger NJ, Hong G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 2020;3:1087-113.

2. Song E, Li J, Rogers JA. Barrier materials for flexible bioelectronic implants with chronic stability - current approaches and future directions. APL Mater 2019;7:050902.

3. Song E, Li J, Won SM, Bai W, Rogers JA. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater 2020;19:590-603.

4. Kim DH, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater 2010;9:511-7.

5. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2007;10:1116-24.

6. Wells JD, Kao C, Jansen ED, Konrad PE, Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt 2005;10:064003.

7. Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 2014;17:322-9.

8. Liang L, Liu C, Cai P, et al. Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy 2022;100:107483.

9. Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2005;2:S105-20.

10. Zhang T, Liang H, Wang Z, et al. Piezoelectric ultrasound energy - harvesting device for deep brain stimulation and analgesia applications. Sci Adv 2022;8:eabk0159.

11. Bonmassar G, Lee SW, Freeman DK, Polasek M, Fried SI, Gale JT. Microscopic magnetic stimulation of neural tissue. Nat Commun 2012;3:921.

12. Rand D, Jakešová M, Lubin G, et al. Direct electrical neurostimulation with organic pigment photocapacitors. Adv Mater 2018;30:1707292.

13. Jiang Y, Huang Y, Luo X, et al. Neural stimulation in vitro and in vivo by photoacoustic nanotransducers. Matter 2021;4:654-74.

14. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008;10:275-309.

15. Schwalb JM, Hamani C. The history and future of deep brain stimulation. Neurotherapeutics 2008;5:3-13.

16. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med 1946;20:112-137.

17. Sackeim HA. Modern electroconvulsive therapy: vastly improved yet greatly underused. JAMA Psychiatry 2017;74:779-80.

18. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral parkinson disease. Stereotact Funct Neurosurg 1987;50:344-6.

19. Chen XL, Xiong YY, Xu GL, Liu XF. Deep brain stimulation. Intervent Neurol 2013;1:200-12.

20. Elkin BS, Ilankovan A, Morrison B III. Age-dependent regional mechanical properties of the rat hippocampus and cortex. J Biomech Eng 2010;132:011010.

21. Wu X, Peng H. Polymer-based flexible bioelectronics. Sci Bull 2019;64:634-40.

22. Lai HY, Liao LD, Lin CT, et al. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J Neural Eng 2012;9:036001.

23. Wurth S, Capogrosso M, Raspopovic S, et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 2017;122:114-29.

24. Fujie T, Ahadian S, Liu H, et al. Engineered nanomembranes for directing cellular organization toward flexible biodevices. Nano Lett 2013;13:3185-92.

25. Xiang Z, Yen S, Xue N, et al. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng 2014;24:065015.

26. Minev IR, Musienko P, Hirsch A, et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015;347:159-63.

27. Zhu M, Wang H, Li S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv Healthc Mater 2021;10:2100646.

28. David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices 2014;16:43-53.

29. Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 2015;9:4465-74.

30. Mccallum GA, Sui X, Qiu C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci Rep 2017;7:11723.

31. Tang R, Zhang C, Liu B, et al. Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording. Biosens Bioelectron 2022;216:114600.

32. Fan X, Chen Z, Sun H, Zeng S, Liu R, Tian Y. Polyelectrolyte-based conductive hydrogels: from theory to applications. Soft Sci 2022;2:10.

33. Cong Y, Fu J. Hydrogel - tissue interface interactions for implantable flexible bioelectronics. Langmuir 2022;38:11503-13.

34. Kim SD, Park K, Lee S, et al. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft Sci 2023;3:18.

35. Zhang J, Wang L, Xue Y, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation. Adv Mater 2023;35:2209324.

36. Nguyen TK, Barton M, Ashok A, et al. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proc Natl Acad Sci U S A 2022;119:e2203287119.

37. Lin JC. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antennas Propag Mag 2006;48:157-9.

38. Fotopoulou K, Flynn BW. Wireless power transfer in loosely coupled links: coil misalignment model. IEEE Trans Magn 2011;47:416-30.

39. Freeman DK, O’brien JM, Kumar P, et al. A sub-millimeter, inductively powered neural stimulator. Front Neurosci 2017;11:659.

40. Maeng LY, Murillo MF, Mu M, et al. Behavioral validation of a wireless low-power neurostimulation technology in a conditioned place preference task. J Neural Eng 2019;16:026022.

41. Singer A, Dutta S, Lewis E, et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 2020;107:631-43.e5.

42. Yu Z, Chen JC, Alrashdan FT, et al. MagNI: a magnetoelectrically powered and controlled wireless neurostimulating implant. IEEE Trans Biomed Circuits Syst 2020;14:1241-52.

43. Chen JC, Kan P, Yu Z, et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022;6:706-16.

44. Guduru R, Liang P, Hong J, et al. Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine 2015;10:2051-61.

45. Kozielski KL, Jahanshahi A, Gilbert HB, et al. Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice. Sci Adv 2021;7:eabc4189.

46. Han F, Ma X, Zhai Y, et al. Strategy for designing a cell scaffold to enable wireless electrical stimulation for enhanced neuronal differentiation of stem cells. Adv Healthc Mater 2021;10:2100027.

47. Tang B, Zhuang J, Wang L, et al. Harnessing cell dynamic responses on magnetoelectric nanocomposite films to promote osteogenic differentiation. ACS Appl Mater Interfaces 2018;10:7841-51.

48. Zhang Y, Chen S, Xiao Z, et al. Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration. Adv Healthc Mater 2021;10:2100695.

49. Qi F, Gao X, Shuai Y, et al. Magnetic-driven wireless electrical stimulation in a scaffold. Compos B Eng 2022;237:109864.

50. Goetz G, Palanker D, Cizmar T. Holographic display system for photovoltaic retinal prosthesis. Invest Ophthalmol Vis Sci 2013;54:352. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2148311. [Last accessed on 27 Nov 2023]

51. Chen ZC, Wang B, Bhuckory MB, et al. Optically configurable confinement of electric field with photovoltaic retinal prosthesis. Invest Ophthalmol Vis Sci 2021;62:3166. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2776270. [Last accessed on 27 Nov 2023]

52. Chenais NAL, Airaghi Leccardi MJI, Ghezzi D. Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun Mater 2021;2:28.

53. Loudin JD, Simanovskii DM, Vijayraghavan K, et al. Optoelectronic retinal prosthesis: system design and performance. J Neural Eng 2007;4:S72.

54. Mathieson K, Loudin J, Goetz G, et al. Photovoltaic retinal prosthesis with high pixel density. Nature Photon 2012;6:391-7.

55. Boinagrov D, Lei X, Goetz G, et al. Photovoltaic pixels for neural stimulation: circuit models and performance. IEEE Trans Biomed Circuits Syst 2016;10:85-97.

56. Lei X, Huang TW, Flores TA, et al. Photovoltaic subretinal prosthesis with pixel sizes down to 40 um. Invest Ophthalmol Vis Sci 2017;58:4269. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2641379. [Last accessed on 27 Nov 2023]

57. Bhuckory MB, Chen ZC, Shin A, et al. 3-dimensional subretinal prosthesis with single-cell resolution. Invest Ophthalmol Vi Sci 2022;63:4516-F0303. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2782016. [Last accessed on 27 Nov 2023]

58. Wang BY, Chen ZC, Bhuckory M, et al. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats. Nat Commun 2022;13:6627.

59. Silverå Ejneby M, Migliaccio L, Gicevičius M, et al. Extracellular photovoltage clamp using conducting polymer-modified organic photocapacitors. Adv Mater Technol 2020;5:1900860.

60. Silverå Ejneby M, Jakešová M, Ferrero JJ, et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat Biomed Eng 2022;6:741-53.

61. Menz MD, Oralkan O, Khuri-Yakub PT, Baccus SA. Precise neural stimulation in the retina using focused ultrasound. J Neurosci 2013;33:4550-60.

62. Seo D, Neely RM, Shen K, et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 2016;91:529-39.

63. Marketing clearance of diagnostic ultrasound systems and transducers. Guidance for industry and food and drug administration staff. Available from: https://www.fda.gov/media/71100/download. [Last accessed on 27 Nov 2023].

64. Wang X, Song J, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science 2007;316:102-5.

65. Ciofani G, Danti S, D’Alessandro D, et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 2010;4:6267-77.

66. Marino A, Arai S, Hou Y, et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 2015;9:7678-89.

67. Piech DK, Johnson BC, Shen K, et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 2020;4:207-22.

68. Shi Q, Wang T, Lee C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 2016;6:24946.

69. Yang Z, Zeng D, Wang H, Zhao C, Tan J. Harvesting ultrasonic energy using 1-3 piezoelectric composites. Smart Mater Struct 2015;24:075029.

70. Jiang L, Yang Y, Chen R, et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy 2019;56:216-24.

71. Jiang L, Yang Y, Chen R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv Funct Mater 2019;29:1902522.

72. Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022;13:3853.

73. Jiang L, Lu G, Yang Y, et al. Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implants. Energy Environ Sci 2021;14:1490-505.

74. Chen P, Wu P, Wan X, et al. Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators. Nano Energy 2021;86:106123.

75. Das R, Curry EJ, Le TT, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy 2020;76:105028.

76. Chen P, Wang Q, Wan X, et al. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 2021;89:106327.

77. Xu Z, Wan X, Mo X, et al. Electrostatic assembly of laminated transparent piezoelectrets for epidermal and implantable electronics. Nano Energy 2021;89:106450.

78. Wan X, Chen P, Xu Z, et al. Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv Funct Mater 2022;32:2200589.

79. Tofts PS. The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol 1990;35:1119-28.

80. Bagherzadeh H, Meng Q, Lu H, Hong E, Yang Y, Choa FS. High-performance magnetic-core coils for targeted rodent brain stimulations. BME Front 2022;2022:9854846.

81. Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 2015;58:208-13.

82. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 2013;6:1-13.

83. Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol 2007;24:31-8.

84. Wilson SA, Day BL, Thickbroom GW, Mastaglia FL. Spatial differences in the sites of direct and indirect activation of corticospinal neurones by magnetic stimulation. Electroencephalogr Clin Neurophysiol 1996;101:255-61.

85. Di Lazzaro V, Oliviero A, Meglio M, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 2000;111:794-9.

86. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117:847-58.

87. Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:1398-403.

88. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201-6.

89. Hamada M, Hanajima R, Terao Y, et al. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clin Neurophysiol 2007;118:2672-82.

90. Khedr EM, Gilio F, Rothwell J. Effects of low frequency and low intensity repetitive paired pulse stimulation of the primary motor cortex. Clin Neurophysiol 2004;115:1259-63.

91. Park HJ, Bonmassar G, Kaltenbach JA, Machado AG, Manzoor NF, Gale JT. Activation of the central nervous system induced by micro-magnetic stimulation. Nat Commun 2013;4:2463.

92. Khalifa A, Zaeimbashi M, Zhou TX, et al. The development of microfabricated solenoids with magnetic cores for micromagnetic neural stimulation. Microsyst Nanoeng 2021;7:91.

93. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263-8.

94. Yang Y, Wu M, Vázquez-Guardado A, et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat Neurosci 2021;24:1035-45.

95. Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. Nat Methods 2021;18:1112-6.

96. Wells J, Kao C, Mariappan K, et al. Optical stimulation of neural tissue in vivo. Opt Lett 2005;30:504-6.

97. Wu X, Jiang Y, Rommelfanger NJ, et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat Biomed Eng 2022;6:754-70.

98. Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am J Physiol 1929;91:284-90.

99. Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010;66:681-94.

100. Yoo SS, Bystritsky A, Lee JH, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage 2011;56:1267-75.

101. Lee W, Lee SD, Park MY, et al. Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound Med Biol 2016;42:459-70.

102. Dallapiazza RF, Timbie KF, Holmberg S, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg 2018;128:875-84.

103. Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol 2013;23:2430-3.

104. Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep 2018;8:10007.

105. Panczykowski DM, Monaco EA III, Friedlander RM. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Neurosurgery 2014;74:N8-9.

106. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007;8:577-81.

107. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9:527-65.

108. Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 2004;6:229-48.

109. Dinno MA, Dyson M, Young SR, Mortimer AJ, Hart J, Crum LA. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol 1989;34:1543-52.

110. Ye J, Tang S, Meng L, et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 2018;18:4148-55.

111. Li J, Ma Y, Zhang T, Shung KK, Zhu B. Recent advancements in ultrasound transducer: from material strategies to biomedical applications. BME Front 2022;2022:9764501.

112. Qian X, Lu G, Thomas BB, et al. Noninvasive ultrasound retinal stimulation for vision restoration at high spatiotemporal resolution. BME Front 2022;2022:9829316.

113. Zhang T, Wang Z, Liang H, et al. Transcranial focused ultrasound stimulation of periaqueductal gray for analgesia. IEEE Trans Biomed Eng 2022;69:3155-62.

114. Kook G, Jo Y, Oh C, et al. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography. Microsyst Nanoeng 2023;9:45.

115. Jiang Y, Lee HJ, Lan L, et al. Optoacoustic brain stimulation at submillimeter spatial precision. Nat Commun 2020;11:881.

116. Shi L, Jiang Y, Fernandez FR, et al. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light Sci Appl 2021;10:143.

117. Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration. ACS Nano 2022;16:2292-305.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/