REFERENCES

1. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259-91.

2. Gurwitz JH, Pearson SD. Novel therapies for an aging population: grappling with price, value, and affordability. JAMA 2019;321:1567-8.

3. Osier F, Ting JPY, Fraser J, et al. The global response to the COVID-19 pandemic: how have immunology societies contributed? Nat Rev Immunol 2020;20:594-602.

4. Yip W, Fu H, Chen AT, et al. 10 years of health-care reform in China: progress and gaps in Universal Health Coverage. Lancet 2019;394:1192-204.

5. Kvedar JC, Fogel AL, Elenko E, Zohar D. Digital medicine’s march on chronic disease. Nat Biotechnol 2016;34:239-46.

6. Sen A, Jette N, Husain M, Sander JW. Epilepsy in older people. Lancet 2020;395:735-48.

7. Solanki S, Gupta AK, Saha U, Krasnoslobodtsev AV, Gupta RK, Malhotra BD. Triboelectric Nanogenerator-based smart biomedical sensors for healthcare. Sustain Energy Technol Assess 2023;57:103233.

8. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron 2018;1:160-71.

9. Guk K, Han G, Lim J, et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019;9:813.

10. Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern C 2010;40:1-12.

11. Fratzl P, Barth FG. Biomaterial systems for mechanosensing and actuation. Nature 2009;462:442-8.

12. Zheng Y, Tang N, Omar R, et al. Smart materials enabled with artificial intelligence for healthcare wearables. Adv Funct Mater 2021;31:2105482.

13. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142-56.

14. Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano 2021;15:12497-508.

15. Wang B, Facchetti A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv Mater 2019;31:1901408.

16. Weng W, Chen P, He S, Sun X, Peng H. Smart electronic textiles. Angew Chem Int Ed Engl 2016;55:6140-69.

17. Kirstein T. 1 - The future of smart-textiles development: new enabling technologies, commercialization and market trends. In: Multidisciplinary know-how for smart-textiles developers. Elsevier; 2013. pp. 1-25.

18. Xing Y, Xu Y, Wu Q, Wang G, Zhu M. Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. J Mater Chem C 2021;9:439-55.

19. Hu Y, Zheng Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 2019;56:16-24.

20. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors 2014;14:11957-92.

21. ElSaboni Y, Hunt JA, Stanley J, Moffatt C, Wei Y. Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022;12:7972.

22. Lee S, Kim SR, Jeon KH, et al. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed. Sci Rep 2023;13:5773.

23. Singh AV, Rahman A, Sudhir Kumar NVG, et al. Bio-inspired approaches to design smart fabrics. Mater Design (1980-2015) 2012;36:829-39.

24. Syduzzaman M, Patwary S, Farhana K, Ahmed S. Smart textiles and nano-technology: a general overview. J Text Sci Eng 2015;5:1-7.

25. Cheng R, Dong K, Liu L, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 2020;14:15853-63.

26. Islam MR, Afroj S, Beach C, et al. Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience 2022;25:103945.

27. Fernández-Caramés TM, Fraga-Lamas P. Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 2018;7:405.

28. Stylios GK. Novel smart textiles. Materials 2020;13:950.

29. Su Y, Liu Y, Li W, et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz 2023;10:842-51.

30. Li Y, Wei C, Jiang Y, et al. Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications. Adv Fiber Mater 2022;4:1584-94.

31. Parrilla M, Cánovas R, Jeerapan I, Andrade FJ, Wang J. A textile-based stretchable multi-ion potentiometric sensor. Adv Healthc Mater 2016;5:996-1001.

32. Di Tocco J, Lo Presti D, Rainer A, Schena E, Massaroni C. Silicone-textile composite resistive strain sensors for human motion-related parameters. Sensors 2022;22:3954.

33. Su M, Li P, Liu X, Wei D, Yang J. Textile-based flexible capacitive pressure sensors: a review. Nanomaterials 2022;12:1495.

34. Zhu Q, Wu T, Wang N. From piezoelectric nanogenerator to non-invasive medical sensor: a review. Biosensors 2023;13:113.

35. Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater 2018;30:1706790.

36. Han T, Nag A, Afsarimanesh N, et al. Gold/polyimide-based resistive strain sensors. Electronics 2019;8:565.

37. Ding T, Chan KH, Zhou Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun 2020;11:6006.

38. Lu L, Ding W, Liu J, Yang B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020;78:105251.

39. Jin Z, Zhao F, Lei Y, Wang YC. Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 2022;95:106988.

40. Ma Y, Ouyang J, Raza T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 2021;85:105941.

41. Wang L, Zhang K. Textile-based thermoelectric generators and their applications. Energy Environ Mater 2020;3:67-79.

42. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50:1976-87.

43. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci 2005;96:557-69.

44. Tseghai GB, Malengier B, Fante KA, Nigusse AB, Van Langenhove L. Integration of conductive materials with textile structures, an overview. Sensors 2020;20:6910.

45. Lund A, Wu Y, Fenech-Salerno B, Torrisi F, Carmichael TB, Müller C. Conducting materials as building blocks for electronic textiles. MRS Bull 2021;46:491-501.

46. Tseghai GB, Mengistie DA, Malengier B, Fante KA, Van Langenhove L. PEDOT:PSS-based conductive textiles and their applications. Sensors 2020;20:1881.

47. Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 2019;48:1712-40.

48. Lund A, van der Velden NM, Persson NK, Hamedi MM, Müller C. Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Mat Sci Eng R 2018;126:1-29.

49. Wang Y, Zhang X, Cao J, Huang X, Zhang X. Multifunctional e-textiles based on biological phytic acid-doped polyaniline/protein fabric nanocomposites. Adv Mater Technol 2021;6:2100003.

50. Wu C, Kim TW, Li F, Guo T. Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano 2016;10:6449-57.

51. Naysmith A, Mian NS, Rana S. Green synthesised silver nanocomposite for thermoregulating e-textiles. Eng Proc 2022;15:15.

52. León-Boigues L, Flores A, Gómez-Fatou MA, Vega JF, Ellis GJ, Salavagione HJ. PET/graphene nanocomposite fibers obtained by dry-jet wet-spinning for conductive textiles. Polymers 2023;15:1245.

53. Omanović-mikličanin E, Badnjević A, Kazlagić A, Hajlovac M. Nanocomposites: a brief review. Health Technol 2020;10:51-9.

54. Asif AKMA, Hasan MZ. Application of nanotechnology in modern textiles: a review. Int J Curr Eng Technol 2018;8:227-31.

55. Khan MR, Kim HG, Park JS, Shin JW, Nguyen CT, Lee HBR. Tunable color coating of e-textiles by atomic layer deposition of multilayer TiO2/Al2O3 films. Langmuir 2020;36:2794-801.

56. Parvinzadeh Gashti M, Pakdel E, Alimohammadi F. 11 - Nanotechnology-based coating techniques for smart textiles. In: Active coatings for smart textiles. Elsevier; 2016. pp. 243-68.

57. Zhang L, He J, Liao Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A 2019;7:26631-40.

58. Ismail WNW. Sol-gel technology for innovative fabric finishing - A review. J Sol Gel Sci Technol 2016;78:698-707.

59. Nigusse AB, Mengistie DA, Malengier B, Tseghai GB, Van Langenhove L. Wearable smart textiles for long-term electrocardiography monitoring - A review. Sensors 2021;21:4174.

60. Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023;19:100565.

61. Chen M, Liu J, Li P, et al. Fabric computing: concepts, opportunities, and challenges. Innovation 2022;3:100340.

62. Dong J, Wang D, Peng Y, et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022;97:107160.

63. Zhang X, Tang S, Ma R, et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 2022;103:107778.

64. Ouyang Z, Li S, Liu J, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022;104:107963.

65. Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021;194:113609.

66. Zhu D, Zhang Z, Chen M, et al. A perspective on rhythmic gymnastics performance analysis powered by intelligent fabric. Adv Fiber Mater 2023;5:1-11.

67. He X, Gu J, Hao Y, et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J 2022;450:137937.

68. Wei C, Cheng R, Ning C, et al. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv Funct Mater 2023;33:2303562.

69. Fang Y, Zou Y, Xu J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 2021;33:2104178.

70. Zhang H, Sun L, Guo J, Zhao Y. Hierarchical spinning of janus textiles with anisotropic wettability for wound healing. Research 2023;6:0129.

71. Pi H, Xi Y, Wu J, et al. Janus fibrous membrane with directional liquid transport capacity for wound healing promotion. Chem Eng J 2023;455:140853.

72. Qiao Y, Li X, Wang J, et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 2022;18:e2104810.

73. Sheng F, Yi J, Shen S, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl Mater Interfaces 2021;13:44868-77.

74. Wang J, Lu C, Zhang K. Textile-based strain sensor for human motion detection. Energy Environ Mater 2020;3:80-100.

75. Hu X, Huang T, Liu Z, et al. Conductive graphene-based e-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J Mater Chem A 2020;8:14778-87.

76. Jiang Y, An J, Liang F, et al. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res 2022;15:8389-97.

77. Hernandez JE, Cretu E. A wireless, real-time respiratory effort and body position monitoring system for sleep. Biomed Signal Process Control 2020;61:102203.

78. Peng X, Dong K, Ning C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Materials 2021;31:2103559.

79. Adepu V, Kamath K, Mattela V, Sahatiya P. Development of Ti3C2Tx/NiSe2 nanohybrid-based large-area pressure sensors as a smart bed for unobtrusive sleep monitoring. Adv Mater Interfaces 2021;8:2100706.

80. Lin Z, Yang J, Li X, et al. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 2018;28:1704112.

81. Heo JS, Hossain MF, Kim I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: a critical review. Sensors 2020;20:3927.

82. Zhu Z, Pu M, Xu Z. Sleep monitoring based on triboelectric nanogenerator: wearable and washable approach. Front Psychiatry 2023;14:1163003.

83. Kwon S, Kim H, Yeo WH. Recent advances in wearable sensors and portable electronics for sleep monitoring. iScience 2021;24:102461.

84. Zhou Z, Padgett S, Cai Z, et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 2020;155:112064.

85. Issatayeva A, Beisenova A, Tosi D, Molardi C. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors 2020;20:3408.

86. Anastasova S, Crewther B, Bembnowicz P, et al. A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 2017;93:139-45.

87. Heikenfeld J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 2016;28:1242-9.

88. Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging trends in microfluidics based devices. Biotechnol J 2020;15:e1900279.

89. Khoshmanesh F, Thurgood P, Pirogova E, Nahavandi S, Baratchi S. Wearable sensors: at the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens Bioelectron 2021;176:112946.

90. Ju J, Xiao G, Jian Y, et al. Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy 2023;109:108304.

91. Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.

92. Mo L, Ma X, Fan L, Xin JH, Yu H. Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat. Chem Eng J 2023;454:140473.

93. Grym K, Niela-Vilén H, Ekholm E, et al. Feasibility of smart wristbands for continuous monitoring during pregnancy and one month after birth. BMC Pregnancy Childbirth 2019;19:34.

94. Ryu D, Kim DH, Price JT, et al. Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings. Proc Natl Acad Sci U S A 2021;118:e2100466118.

95. Joyce K. Smart textiles: transforming the practice of medicalisation and health care. Sociol Health Illn 2019;41 Suppl 1:147-61.

96. Rooijakkers MJ, Song S, Rabotti C, et al. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput Math Methods Med 2014;2014:960980.

97. Bai W, Zhai J, Zhou S, et al. Flexible smart wearable Co@C@carbon fabric for efficient electromagnetic shielding, thermal therapy, and human movement monitoring. Ind Eng Chem Res 2022;61:11825-39.

98. Li W, Song Z, Kong H, et al. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022;104:107935.

99. Giglio A, Neuwerk K, Haupt M, Conti GM, Paoletti I. Textile-based sound sensors (TSS): new opportunities for sound monitoring in smart buildings. Textiles 2022;2:296-306.

100. Yan W, Noel G, Loke G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022;603:616-23.

101. Nayeem MOG, Lee S, Jin H, et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc Natl Acad Sci U S A 2020;117:7063-70.

102. Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart textiles for healthcare and sustainability. ACS Nano 2022;16:13301-13.

103. Jiang Y, Trotsyuk AA, Niu S, et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol 2023;41:652-62.

104. Nie X, Wu S, Huang F, Wang Q, Wei Q. Smart textiles with self-disinfection and photothermochromic effects. ACS Appl Mater Interfaces 2021;13:2245-55.

105. Liu X, Miao J, Fan Q, et al. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces 2021;13:56607-19.

106. Zhao X, Wang LY, Tang CY, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 2020;14:8793-805.

107. Hu X, Tian M, Xu T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020;14:559-67.

108. Ferri A, Plutino MR, Rosace G. Recent trends in smart textiles: wearable sensors and drug release systems. AIP Conf Proc 2019;2145:020014.

109. Sun XZ, Wang N. A thermosensitive textile-based drug delivery system for treating UVB-induced damage. Cellulose 2020;27:8329-39.

110. Chatterjee S, Hui PC, Kan C, Wang W. Dual-responsive (pH/temperature) pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019;9:11658.

111. Cheng C, Qiu Y, Tang S, et al. Artificial spider silk based programmable woven textile for efficient wound management. Adv Funct Mater 2022;32:2107707.

112. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:1902549.

113. Chen Y, Tan X, Yan D, Zhang Z, Gong Y. A composite fabric-based soft rehabilitation glove with soft joint for dementia in Parkinson’s disease. IEEE J Transl Eng Health Med 2020;8:1400110.

114. Yang J, Zhou J, Tao G, Alrashoud M, Mutib KNA, Al-Hammadi M. Wearable 3.0: from smart clothing to wearable affective robot. IEEE Network 2019;33:8-14.

115. Angelucci A, Cavicchioli M, Cintorrino IA, et al. Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques. Sensors 2021;21:814.

116. Cleary F, Srisa-An W, Henshall DC, Balasubramaniam S. Emerging AI technologies inspiring the next generation of e-textiles. IEEE Access 2023;11:56494-508.

117. Ruckdashel RR, Venkataraman D, Park JH. Smart textiles: a toolkit to fashion the future. J Appl Phys 2021;129:130903.

118. Uzun S, Seyedin S, Stoltzfus AL, et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater 2019;29:1905015.

119. Ahmed A, Hossain MM, Adak B, Mukhopadhyay S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem Mater 2020;32:10296-320.

120. Mokhtari F, Cheng Z, Raad R, Xi J, Foroughi J. Piezofibers to smart textiles: a review on recent advances and future outlook for wearable technology. J Mater Chem A 2020;8:9496-522.

121. Wang Y, Wang Z, Lu Z, et al. Humidity- and water-responsive torsional and contractile lotus fiber yarn artificial muscles. ACS Appl Mater Interfaces 2021;13:6642-9.

122. Alshabouna F, Lee HS, Barandun G, et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater Today 2022;59:56-67.

123. Xu R, Wu G, Jiang M, et al. Multi-stimuli dually-responsive intelligent woven structures with local programmability for biomimetic applications. Small 2023;19:e2207900.

124. Yang Y, Wei X, Zhang N, et al. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876.

125. Fang Y, Xu J, Xiao X, et al. A Deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv Mater 2022;34:e2200252.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/