REFERENCES

1. Hu H, Huang H, Li M, et al. A wearable cardiac ultrasound imager. Nature 2023;613:667-75.

2. Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023;380:735-42.

3. Zhang P, Lei IM, Chen G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat Commun 2022;13:4775.

4. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.

5. Zhuang Y, Xie RJ. Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv Mater 2021;33:2005925.

6. Zhang JC, Wang X, Marriott G, Xu CN. Trap-controlled mechanoluminescent materials. Prog Mater Sci 2019;103:678-742.

7. Tu L, Xie Y, Li Z. Advances in pure organic mechanoluminescence materials. J Phys Chem Lett 2022;13:5605-17.

8. Chandra BP, Rathore AS. Classification of mechanoluminescence. Cryst Res Technol 1995;30:885-96.

9. Ma X, Wang C, Wei R, et al. Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 2022;16:2789-97.

10. Zhao X, Zhang Z, Liao Q, et al. Self-powered user-interactive electronic skin for programmable touch operation platform. Sci Adv 2020;6:eaba4294.

11. Jeong SM, Song S, Joo KI, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci 2014;7:3338-46.

12. Song S, Song B, Cho CH, Lim SK, Jeong SM. Textile-fiber-embedded multiluminescent devices: a new approach to soft display systems. Mater Today 2020;32:46-58.

13. Wang C, Ma R, Peng D, et al. Mechanoluminescent hybrids from a natural resource for energy-related applications. InfoMat 2021;3:1272-84.

14. Li C, He Q, Wang Y, et al. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat Commun 2022;13:3914.

15. Wong MC, Chen L, Bai G, Huang LB, Hao J. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Adv Mater 2017;29:1701945.

16. Jeong SM, Song S, Seo HJ, et al. Battery-free, human-motion-powered light-emitting fabric: mechanoluminescent textile. Adv Sustain Syst 2017;1:1700126.

17. Wang C, Yu Y, Yuan Y, et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity. Matter 2020;2:181-93.

18. Jeong SM, Song S, Lee SK, Choi B. Mechanically driven light-generator with high durability. Appl Phys Lett 2013;102:051110.

19. Qian X, Cai Z, Su M, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv Mater 2018;30:1800291.

20. Hou B, Yi L, Li C, et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat Electron 2022;5:682-93.

21. Wei R, He J, Ge S, et al. Self-powered all-optical tactile sensing platform for user-interactive interface. Adv Mater Technol 2023;8:2200757.

22. Akiyama M, Xu CN, Nonaka K, Watanabe T. Intense visible light emission from Sr3Al2O6:Eu,Dy. Appl Phys Lett 1998;73:3046-8.

23. Xu CN, Watanabe T, Akiyama M, Zheng XG. Artificial skin to sense mechanical stress by visible light emission. Appl Phys Lett 1999;74:1236-8.

24. Du Y, Jiang Y, Sun T, et al. Mechanoluminescence: mechanically excited multicolor luminescence in lanthanide ions (Adv. Mater. 7/2019). Adv Mater 2019;31:1970051.

25. Peng D, Jiang Y, Huang B, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv Mater 2020;32:1907747.

26. Suo H, Wang Y, Zhang X, et al. A broadband near-infrared nanoemitter powered by mechanical action. Matter 2023;6:2935-49.

27. Chen C, Zhuang Y, Tu D, Wang X, Pan C, Xie RJ. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO. Nano Energy 2020;68:104329.

28. Zhan TZ, Xu CN, Yamada H, et al. Enhancement of impact-induced mechanoluminescence by swift heavy ion irradiation. Appl Phys Lett 2012;100:014101.

29. Zhuang Y, Li X, Lin F, et al. Visualizing dynamic mechanical actions with high sensitivity and high resolution by near-distance mechanoluminescence imaging. Adv Mater 2022;34:2202864.

30. Jeong SM, Song S, Kim H, Joo KI, Takezoe H. Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite. Adv Funct Mater 2016;26:4848-58.

31. Jeong HI, Yang J, Jeong WH, et al. Quantum dot-in-mechanoluminescent matrix for full-color implementation. Adv Opt Mater 2023;11:2202088.

32. Yuan J, Yang Y, Yang X, et al. Regulating the trap distribution to achieve high-contrast mechanoluminescence with an extended saturation threshold through co-doping Nd3+ into CaZnOS:Bi3+,Li+. J Mater Chem C 2021;9:7689-96.

33. Li X, Wang X, Hu R, Li Y, Yao X. Modulating trap levels via co-doping Ca2+/Si4+ in LiTaO3:Pr3+ to improve both the intensity and threshold of mechanoluminescence. J Alloys Compd 2022;896:162877.

34. Zhou S, Cheng Y, Xu J, Lin H, Liang W, Wang Y. Design of ratiometric dual-emitting mechanoluminescence: lanthanide/transition-metal combination strategy. Laser Photonics Rev 2022;16:2100666.

35. Yang X, Cheng Y, Xu J, Lin H, Wang Y. Stress sensing by ratiometric mechanoluminescence: a strategy based on structural probe. Laser Photonics Rev 2022;16:2200365.

36. Zhou S, Cheng Y, Xu J, Lin H, Wang Y. Ratiometric mechanoluminescence of double-activator doped phosphatic phosphors: color-resolved visualization of stress-sensing and quantified evaluation for sensing performance. Adv Funct Mater 2022;32:2208919.

37. Ning J, Zheng Y, Ren Y, et al. MgF2:Mn2+: novel material with mechanically-induced luminescence. Sci Bull 2022;67:707-15.

38. Hu R, Zhang Y, Zhao Y, Wang X, Li G, Deng M. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display. Mater Chem Front 2021;5:6891-903.

39. Chen B, Zhang X, Wang F. Expanding the toolbox of inorganic mechanoluminescence materials. Acc Mater Res 2021;2:364-73.

40. Feng A, Smet PF. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials 2018;11:484.

41. Chandra BP, Elyas M, Majumdar B. Dislocation models of mechanoluminescence in γ- and X-irradiated alkali halides crystals. Solid State Commun 1982;42:753-7.

42. Chandra BP. Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps. J Lumin 2008;128:1217-24.

43. Li W, Huang Q, Yang Z, et al. Activating versatile mechanoluminescence in organic host-guest crystals by controlling exciton transfer. Angew Chem Int Ed Engl 2020;59:22645-51.

44. Xie Y, Li Z. Triboluminescence: recalling interest and new aspects. Chem 2018;4:943-71.

45. Wang X, Zhang H, Yu R, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv Mater 2015;27:2324-31.

46. Chandra BP, Baghel RN, Luka AK, Sanodiya TR, Kuraria RK, Kuraria SR. Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors. J Lumin 2009;129:760-6.

47. Zhang P, Zheng Z, Wu L, Kong Y, Zhang Y, Xu J. Self-reduction-related defects, long afterglow, and mechanoluminescence in centrosymmetric Li2ZnGeO4:Mn2+. Inorg Chem 2021;60:18432-41.

48. Yang L, Li L, Cheng LX, et al. Intense and recoverable piezoluminescence in Pr3+-activated CaTiO3 with centrosymmetric structure. Appl Phys Lett 2021;118:053901.

49. Matsui H, Xu CN, Liu Y, Tateyama H. Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence. Phys Rev B 2004;69:235109.

50. Bai Y, Wang F, Zhang L, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds. Nano Energy 2022;96:107075.

51. Wang W, Wang ZB, Zhang J, Zhou J, Dong W, Wang Y. Contact electrification induced mechanoluminescence. Nano Energy 2022;94:106920.

52. Mukhina MV, Tresback J, Ondry JC, Akey A, Paul Alivisatos A, Kleckner N. Single-particle studies reveal a nanoscale mechanism for elastic, bright, and repeatable ZnS:Mn mechanoluminescence in a low-pressure regime. ACS Nano 2021;15:4115-33.

53. Chen Y, Zhang Y, Karnaushenko D, et al. Addressable and color-tunable piezophotonic light-emitting stripes. Adv Mater 2017;29:1605165.

54. Zhou T, Zhao Y, Chen H, et al. Self-recoverable near-infrared mechanoluminescence from ZnS:Mn by controlling manganese clusterization. Mater Des 2022;224:111407.

55. Xu CN, Li C, Imai Y, Yamada H, Adachi Y, Nishikubo K. Development of elastico-luminescent nanoparticles and their applications. Adv Sci Technol 2006;45:939-44.

56. Tiwari G, Brahme N, Sharma R, Bisen DP, Sao SK, Khare A. Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu3+ doped Ca2Al2SiO7 phosphors. J Lumin 2017;183:89-96.

57. Novitskaya E, Manheim A, Herrera M, Graeve OA. Effect of oxygen vacancies on the mechanoluminescence response of magnesium oxide. J Phys Chem C 2021;125:854-64.

58. Xiang X, Lin H, Li R, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: unexpected mechanoluminescence and applications. Nano Res 2019;12:1049-54.

59. Wu X, Zhu X, Chong P, et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc Natl Acad Sci U S A 2019;116:26332-42.

60. Peng S, Xia P, Wang T, et al. Mechano-luminescence behavior of lanthanide-doped fluoride nanocrystals for three-dimensional stress imaging. ACS Nano 2023;17:9543-51.

61. Yang F, Wu X, Cui H, et al. A palette of rechargeable mechanoluminescent fluids produced by a biomineral-inspired suppressed dissolution approach. J Am Chem Soc 2022;144:18406-18.

62. Ma R, Wei X, Wang C, et al. Reproducible mechanical-to-optical energy conversion in Mn (II) doped sphalerite ZnS. J Lumin 2021;232:117838.

63. Ma R, Wang C, Yan W, et al. Interface synergistic effects induced multi-mode luminescence. Nano Res 2022;15:4457-65.

64. Steimle BC, Fenton JL, Schaak RE. Rational construction of a scalable heterostructured nanorod megalibrary. Science 2020;367:418-24.

65. Patel DK, Cohen BE, Etgar L, Magdassi S. Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Mater Horiz 2018;5:708-14.

66. Zhao J, Song S, Mu X, Jeong SM, Bae J. Programming mechanoluminescent behaviors of 3D printed cellular structures. Nano Energy 2022;103:107825.

67. Zheng T, Runowski M, Martín IR, et al. Mechanoluminescence and photoluminescence heterojunction for superior multimode sensing platform of friction, force, pressure, and temperature in fibers and 3D-printed polymers. Adv Mater 2023;35:2304140.

68. Wang X, Gao D, Su F, et al. Photopolymerization 3D printing of luminescent ceramics. Addit Manuf 2023;73:103695.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/