REFERENCES

1. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.

2. Wang Q, Sun X, Liu C, et al. Current development of stretchable self-powered technology based on nanomaterials toward wearable biosensors in biomedical applications. Front Bioeng Biotechnol 2023;11:1164805.

3. Jia Y, Jiang Q, Sun H, et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 2021;33:e2102990.

4. Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Adv Energy Mater 2018;8:1801837.

5. Hong M, Wang Y, Feng T, et al. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment. J Am Chem Soc 2019;141:1742-8.

6. An CJ, Kang YH, Song H, Jeong Y, Cho SY. Highly integrated and flexible thermoelectric module fabricated by brush-cast doping of a highly aligned carbon nanotube web. ACS Appl Energy Mater 2019;2:1093-101.

7. Vieira EM, Figueira J, Pires AL, et al. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloys Compd 2019;774:1102-16.

8. Sun T, Peavey JL, David Shelby M, Ferguson S, O’connor BT. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers Mana 2015;103:674-80.

9. Owoyele O, Ferguson S, O’connor BT. Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 2015;147:184-91.

10. Song H, Meng Q, Lu Y, Cai K. Progress on PEDOT:PSS/Nanocrystal thermoelectric composites. Adv Electron Mater 2019;5:1800822.

11. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.

12. Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.

13. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: from materials to applications. Mater Today 2021;46:62-108.

14. Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854-8.

15. Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6.

16. Hou C, Zhu M. Semiconductors flex thermoelectric power. Science 2022;377:815-6.

17. Fan Z, Du D, Guan X, Ouyang J. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 2018;51:481-8.

18. Wang L, Zhang Z, Liu Y, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat Commun 2018;9:3817.

19. Kim D, Park Y, Ju D, Lee G, Kwon W, Cho K. Energy-filtered acceleration of charge-carrier transport in organic thermoelectric nanocomposites. Chem Mater 2021;33:4853-62.

20. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011;10:429-33.

21. Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat Mater 2019;18:62-8.

22. Kim H, Anasori B, Gogotsi Y, Alshareef HN. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem Mater 2017;29:6472-9.

23. Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 2015;7:94-100.

24. Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 2012;53:4202-10.

25. Chelawat H, Vaddiraju S, Gleason K. Conformal, conducting poly(3,4-ethylenedioxythiophene) thin films deposited using bromine as the oxidant in a completely dry oxidative chemical vapor deposition process. Chem Mater 2010;22:2864-8.

26. Lee S, Gleason KK. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition. Adv Funct Mater 2015;25:85-93.

27. Hsin C, Huang C, Wu M, Cheng S, Pan R. Synthesis and thermoelectric properties of indium telluride nanowires. Mater Res Bull 2019;112:61-5.

28. Pang J, Zhang X, Shen L, Xu J, Nie Y, Xiang G. Synthesis and thermoelectric properties of Bi-doped SnSe thin films*. Chin Phys B 2021;30:116302.

29. Varghese T, Dun C, Kempf N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv Funct Mater 2020;30:1905796.

30. Zeng M, Zavanelli D, Chen J, et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev 2022;51:485-512.

31. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy 2018;3:301-9.

32. Hong CT, Lee W, Kang YH, et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 2015;3:12314-9.

33. Choi DY, Kang HW, Sung HJ, Kim SS. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013;5:977-83.

34. Zhao X, Mai Y, Luo H, et al. Nano-MoS2/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode. Appl Surf Sci 2014;288:736-41.

35. Lee SH, Park H, Son W, Choi HH, Kim JH. Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. J Mater Chem A 2014;2:13380-7.

36. Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution-filtration. RSC Adv 2015;5:60708-12.

37. Song H, Yao Y, Tang C, et al. Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its nanostructure. Synth Met 2021;275:116742.

38. Ni D, Song H, Chen Y, Cai K. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 2019;170:53-61.

39. Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 2021;121:100840.

40. Li M, Bai Z, Chen X, et al. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin Phys B 2022;31:027201.

41. Song H, Cai K. Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017;125:519-25.

42. Meng Q, Song H, Du Y, Ding Y, Cai K. Facile preparation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Ag2Te nanorod composite films for flexible thermoelectric generator. J Materiomics 2021;7:302-9.

43. Lu Y, Ding Y, Qiu Y, et al. Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl Mater Interfaces 2019;11:12819-29.

44. Lu Y, Li X, Cai K, et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite films for wearable thermoelectric power generators. ACS Appl Mater Interfaces 2021;13:631-8.

45. Du Y, Liu X, Xu J, Shen SZ. Flexible Bi-Te-based alloy nanosheet/PEDOT:PSS thermoelectric power generators. Mater Chem Front 2019;3:1328-34.

46. Liu D, Yan Z, Zhao Y, et al. Facile self-supporting and flexible Cu2S/PEDOT:PSS composite thermoelectric film with high thermoelectric properties for body energy harvesting. Results Phys 2021;31:105061.

47. Yan Z, Zhao Y, Liu D, et al. Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe via the vacuum filtration method. RSC Adv 2020;10:43840-6.

48. Jiang F, Xiong J, Zhou W, et al. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 2016;4:5265-73.

49. Wang X, Meng F, Wang T, et al. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J Alloys Compd 2018;734:121-9.

50. Liu E, Liu C, Zhu Z, et al. Preparation of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/silicon dioxide nanoparticles composite films with large thermoelectric power factor. J Compos Mater 2018;52:621-7.

51. Tian Z, Liu H, Wang N, Liu Y, Zhang X. Facile preparation and thermoelectric properties of PEDOT nanowires/Bi2Te3 nanocomposites. J Mater Sci Mater Electron 2018;29:17367-73.

52. Liu H, Liu P, Zhang M, et al. Properties of PEDOT nanowire/Te nanowire nanocomposites and fabrication of a flexible thermoelectric generator. RSC Adv 2020;10:33965-71.

53. Xiong J, Wang L, Xu J, et al. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater Sci Mater Electron 2016;27:1769-76.

54. Wu Q, Zha K, Zhang J, Zhang J, Hai J, Lu Z. SnS/PEDOT:PSS composite films with enhanced surface conductivities induced by solution post-treatment and their application in flexible thermoelectric. Org Electron 2023;118:106799.

55. Li H, Liang Y, Liu S, Qiao F, Li P, He C. Modulating carrier transport for the enhanced thermoelectric performance of carbon nanotubes/polyaniline composites. Org Electron 2019;69:62-8.

56. Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L. PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 2015;3:7086-92.

57. Hsieh YY, Zhang Y, Zhang L, et al. High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline. Nanoscale 2019;11:6552-60.

58. Xiong J, Jiang F, Shi H, et al. Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 2015;7:14917-25.

59. Jiang Q, Lan X, Liu C, et al. High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting. Mater Chem Front 2018;2:679-85.

60. Zhang Z, Chen G, Wang H, Li X. Template-directed in situ polymerization preparation of nanocomposites of PEDOT:PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 2015;10:149-53.

61. Song H, Liu C, Xu J, Jiang Q, Shi H. Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 2013;3:22065-71.

62. Liu X, Du Y, Meng Q, Shen SZ, Xu J. Flexible thermoelectric power generators fabricated using graphene/PEDOT:PSS nanocomposite films. J Mater Sci Mater Electron 2019;30:20369-75.

63. Du Y, Shi Y, Meng Q, Shen SZ. Preparation and thermoelectric properties of flexible SWCNT/PEDOT:PSS composite film. Synth Met 2020;261:116318.

64. Deng W, Deng L, Li Z, Zhang Y, Chen G. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl Mater Interfaces 2021;13:12131-40.

65. Huang J, Liu X, Du Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites. J Materiomics 2022;8:1213-7.

66. Wang P, Liao Y, Lai Y, et al. Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process. Mater Chem Phys 2012;134:325-32.

67. Wang H, Hsu JH, Yi SI, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Adv Mater 2015;27:6855-61.

68. Song H, Qiu Y, Wang Y, et al. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 2017;153:71-83.

69. Liang L, Gao C, Chen G, Guo C. Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. J Mater Chem C 2016;4:526-32.

70. Liang L, Chen G, Guo C. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos Sci Technol 2016;129:130-6.

71. Liang L, Wang X, Wang M, Liu Z, Chen G, Sun G. Flexible poly(3,4-ethylenedioxythiophene)-tosylate/SWCNT composite films with ultrahigh electrical conductivity for thermoelectric energy harvesting. Compos Commun 2021;25:100701.

72. Zhang L, Harima Y, Imae I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org Electron 2017;51:304-7.

73. Bark H, Lee W, Lee H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules. Macromol Res 2015;23:795-801.

74. Kim J, Kwon OH, Kang YH, Jang K, Cho SY, Yoo Y. A facile preparation route of n-type carbon buckypaper and its enhanced thermoelectric performance. Compos Sci Technol 2017;153:32-9.

75. Chortos A, Pochorovski I, Lin P, et al. Universal selective dispersion of semiconducting carbon nanotubes from commercial sources using a supramolecular polymer. ACS Nano 2017;11:5660-9.

76. Shimizu S, Iizuka T, Kanahashi K, et al. Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes. Small 2016;12:3388-92.

77. Avery AD, Zhou BH, Lee J, et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy 2016;1:16033.

78. Wang L, Yao Q, Qu S, Shi W, Chen L. Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films. Org Electron 2016;39:146-52.

79. Tambasov IA, Voronin AS, Evsevskaya NP, et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration. Physica E Low Dimens Syst Nanostruct 2019;114:113619.

80. Wu D, Huang C. High cross-plane thermoelectric performance of carbon nanotube sponge films. Int J Energy Res 2020;44:2332-6.

81. Gao W, Komatsu N, Taylor LW, et al. Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. J Phys D Appl Phys 2020;53:063001.

82. Matsumoto M, Yamaguchi R, Shima K, et al. Control of anisotropic conduction of carbon nanotube sheets and their use as planar-type thermoelectric conversion materials. Sci Technol Adv Mater 2021;22:272-9.

83. Gee C, Tseng C, Wu F, et al. Few layer graphene paper from electrochemical process for heat conduction. Mater Res Innov 2014;18:208-13.

84. Zhao W, Tan HT, Tan LP, et al. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit. ACS Appl Mater Interfaces 2014;6:4940-6.

85. Bark H, Kim J, Kim H, Yim J, Lee H. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix. Curr Appl Phys 2013;13:S111-4.

86. Chen X, Feng L, Yu P, et al. Flexible thermoelectric films based on Bi2Te3 nanosheets and carbon nanotube network with high n-type performance. ACS Appl Mater Interfaces 2021;13:5451-9.

87. Fan J, Huang X, Liu F, Deng L, Chen G. Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-based composite films for high-performance thermoelectric applications. Compos Commun 2021;24:100612.

88. Gao J, Liu C, Miao L, Wang X, Peng Y, Chen Y. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Adv 2016;6:31580-7.

89. Xiao Z, Du Y, Meng Q, Wang L. Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process. Chinese Phys B 2022;31:028103.

90. Chen Z, Cui Y, Liang L, et al. Flexible film and thermoelectric device of single-walled carbon nanotube@conductive metal-organic framework composite. Mater Today Nano 2022;20:100276.

91. Yang S, Qiu P, Chen L, Shi X. Recent Developments in Flexible Thermoelectric Devices. Small Sci 2021;1:2100005.

92. Ding Y, Qiu Y, Cai K, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat Commun 2019;10:841.

93. Drymiotis F, Day TW, Brown DR, Heinz NA, Jeffrey Snyder G. Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5. Appl Phys Lett 2013;103:143906.

94. Lu Y, Liu Y, Li Y, Cai K. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag2Se films. Compos Commun 2021;27:100895.

95. Wu M, Cai K, Li X, et al. Ultraflexible and high-thermoelectric-performance sulfur-doped Ag2Se film on nylon for power generators. ACS Appl Mater Interfaces 2022;14:4307-15.

96. Jiang C, Ding Y, Cai K, et al. Ultrahigh performance of n-type Ag2Se films for flexible thermoelectric power generators. ACS Appl Mater Interfaces 2020;12:9646-55.

97. Jiang C, Wei P, Ding Y, et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 2021;80:105488.

98. Liu Y, Lu Y, Wang Z, et al. High performance Ag2Se films by a one-pot method for a flexible thermoelectric generator. J Mater Chem A 2022;10:25644-51.

99. Gao Q, Wang W, Lu Y, et al. High Power Factor Ag/Ag2Se composite films for flexible thermoelectric generators. ACS Appl Mater Interfaces 2021;13:14327-33.

100. Li X, Lu Y, Cai K, et al. Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films. J Chem Eng 2022;434:134739.

101. Wu W, Liang Z, Jia M, et al. High power factor of Ag2Se/Ag/Nylon composite films for wearable thermoelectric devices. Nanomaterials 2022;12:4238.

102. Palaporn D, Mongkolthanaruk W, Tanusilp S, Kurosaki K, Pinitsoontorn S. A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Appl Phys Lett 2022;120:073901.

103. Zhou H, Zhang Z, Sun C, Deng H, Fu Q. Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires. ACS Appl Mater Interfaces 2020;12:51506-16.

104. Zhang Y, Zhao Y, Guo R, Zhang Z, Liu D, Xue C. Effect of L-ascorbic acid solution concentration on the thermoelectric properties of silver selenide flexible films prepared by vacuum-assisted filtration. Nanomaterials 2022;12:624.

105. Zhou C, Dun C, Wang Q, et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl Mater Interfaces 2015;7:21015-20.

106. Pammi SVN, Jella V, Choi J, Yoon S. Enhanced thermoelectric properties of flexible Cu2-xSe (x ≥ 0.25) NW/polyvinylidene fluoride composite films fabricated via simple mechanical pressing†. J Mater Chem C 2017;5:763-9.

107. Han X, Lu Y, Liu Y, et al. CuI/Nylon membrane hybrid film with large seebeck effect. Chin Phys Lett 2021;38:126701.

108. Zeng X, Ren L, Xie J, et al. Room-temperature welding of silver telluride nanowires for high-performance thermoelectric film. ACS Appl Mater Interfaces 2019;11:37892-900.

109. Yu P, Feng L, Tang W, et al. Robust, flexible thermoelectric film for energy harvesting by a simple and eco-friendly method. ACS Appl Mater Interfaces 2023;15:13144-54.

110. Zhao X, Zhao C, Jiang Y, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. J Power Sources 2020;479:229044.

111. Dong Z, Liu H, Yang X, et al. Facile fabrication of paper-based flexible thermoelectric generator. npj Flex Electron 2021;5:6.

112. Wu M, Li J, Liu Y, et al. High thermoelectric performance and ultrahigh flexibility Ag2S1-xSex film on a nylon membrane. ACS Appl Mater Interfaces 2023;15:8415-23.

113. Wang T, Liu C, Xu J, et al. Thermoelectric performance of restacked MoS2 nanosheets thin-film. Nanotechnology 2016;27:285703.

114. Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 2018;29:025705.

115. Piao M, Li C, Joo M, et al. Hydrothermal synthesis of stable 1T-WS2 and single-walled carbon nanotube hybrid flexible thin films with enhanced thermoelectric performance. Energy Technol 2018;6:1921-8.

116. Ding W, Liu P, Bai Z, et al. Constructing layered MXene/CNTs composite film with 2D-3D sandwich structure for high thermoelectric performance. Adv Mater Interfaces 2020;7:2001340.

117. Diao J, Yuan J, Cai Z, et al. High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 2022;196:243-52.

118. Liu X, Du Y, Meng Q, et al. Free-standing single-walled carbon nanotube/SnSe nanosheet/poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) nanocomposite films for flexible thermoelectric power generators. Adv Eng Mater 2020;22:2000605.

119. Meng Q, Cai K, Du Y, Chen L. Preparation and thermoelectric properties of SWCNT/PEDOT:PSS coated tellurium nanorod composite films. J Alloys Compd 2019;778:163-9.

120. Park D, Kim M, Kim J. Facile fabrication of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated selenium nanowire/carbon nanotube composite films for flexible thermoelectric applications. Dalton Trans 2021;50:12424-9.

121. Liu D, Yan Z, Zhao Y, et al. Facile MWCNTs-SnSe/PEDOT:PSS ternary composite flexible thermoelectric films optimized by cold-pressing. J Mater Res Technol 2021;15:4452-60.

122. Lu Y, Qiu Y, Cai K, et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ Sci 2020;13:1240-9.

123. Lu Y, Qiu Y, Cai K, et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater Today Phys 2020;14:100223.

124. Wang Z, Gao Q, Wang W, et al. High performance Ag2Se/Ag/PEDOT composite films for wearable thermoelectric power generators. Mater Today Phys 2021;21:100553.

125. Li Y, Lou Q, Yang J, et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators. Adv Funct Mater 2022;32:2106902.

126. Park D, Kim M, Kim J. Fabrication of PEDOT:PSS/Ag2Se nanowires for polymer-based thermoelectric applications. Polymers 2020;12:2932.

127. Park D, Lee S, Kim J. Thermoelectric and mechanical properties of PEDOT:PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing. Compos Commun 2022;30:101084.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/