REFERENCES
1. Dahiya R, Yogeswaran N, Liu F, et al. Large-area soft e-skin: the challenges beyond sensor designs. Proc IEEE 2019;107:2016-33.
2. Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022;2:20210112.
3. Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 2022;18:e2103734.
4. Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 2019;119:478-598.
6. Wang C, Sim K, Chen J, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater 2018;30:e1706695.
7. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: principle, classification, integration and outlook. Soft Sci 2021;1:6.
8. Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32:e1902133.
9. Huang S, Liu Y, Zhao Y, Ren Z, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater 2019;29:1805924.
10. Chang Y, Wang L, Li R, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv Mater 2021;33:e2003464.
11. Wang Y, Mao H, Wang Y, Zhu P, Liu C, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. J Mater Chem A 2020;8:15167-76.
12. Hong SY, Oh JH, Park H, et al. Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater 2017;9:e448.
13. Li F, Liu Y, Shi X, et al. Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano Lett 2020;20:6176-84.
14. Jung M, Kim K, Kim B, et al. Paper-based bimodal sensor for electronic skin applications. ACS Appl Mater Interfaces 2017;9:26974-82.
15. Zhang F, Zang Y, Huang D, Di CA, Zhu D. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 2015;6:8356.
16. Hou C, Tai G, Liu Y, et al. Borophene pressure sensing for electronic skin and human-machine interface. Nano Energy 2022;97:107189.
17. Chen S, Peng S, Sun W, Gu G, Zhang Q, Guo X. Scalable processing ultrathin polymer dielectric films with a generic solution based approach for wearable soft electronics. Adv Mater Technol 2019;4:1800681.
18. Li S, Li R, Chen T, Xiao X. Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities staggered in honeycomb matrix. IEEE Sensors J 2020;20:14436-43.
19. Ahmed A, Guan YS, Hassan I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy 2020;75:105044.
20. Chen H, Han S, Liu C, et al. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensor Actuat A-Phys 2016;245:135-9.
21. Sheng F, Zhang B, Cheng R, et al. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano Research Energy 2023;2:e9120079.
22. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater 2016;28:2896-903.
23. Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy 2020;75:105073.
24. You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020;370:961-5.
25. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014;8:12851-7.
26. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859-64.
27. Zhang W, Hou C, Li Y, Zhang Q, Wang H. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. Nanoscale 2017;9:17821-8.
28. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.
29. Zhang H, Moon SK, Ngo TH. 3D Printed electronics of non-contact ink writing techniques: status and promise. Ent J Pr Eng Man-GT 2020;7:511-24.
30. Ni H, Liu J, Wang Z, Yang S. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 2015;28:16-27.
31. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev 2017;117:6467-99.
32. Mei J, Bao Z. Side chain engineering in solution-processable conjugated polymers. Chem Mater 2014;26:604-15.
33. You I, Kong M, Jeong U. Block copolymer elastomers for stretchable electronics. Acc Chem Res 2019;52:63-72.
34. Shin M, Song JH, Lim GH, Lim B, Park JJ, Jeong U. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv Mater 2014;26:3706-11.
35. Lin S, Yuk H, Zhang T, et al. Stretchable hydrogel electronics and devices. Adv Mater 2016;28:4497-505.
36. Mao J, Li T, Luo Y. Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering. J Mater Chem C 2017;5:6834-41.
37. Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog Polym Sci 2012;37:1678-719.
38. Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 2012;63:315-39.
39. Wang C, Zhang M, Xia K, et al. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl Mater Interfaces 2017;9:13331-8.
40. Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017;29:1703700.
41. Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl Mater Interfaces 2018;10:20845-53.
43. Zou B, Chen Y, Liu Y, et al. Repurposed leather with sensing capabilities for multifunctional electronic skin. Adv Sci 2019;6:1801283.
44. Savagatrup S, Printz AD, O’connor TF, Zaretski AV, Lipomi DJ. Molecularly stretchable electronics. Chem Mater 2014;26:3028-41.
45. Rajendran V, Mohan A, Jayaraman M, Nakagawa T. All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy 2019;65:104055.
46. Yamamoto M, Karasawa R, Okuda S, Takamatsu S, Itoh T. Long wavy copper stretchable interconnects fabricated by continuous microcorrugation process for wearable applications. Eng Rep 2020;2:e12143.
47. Ndolomingo MJ, Bingwa N, Meijboom R. Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci 2020;55:6195-241.
48. Araki T, Uemura T, Yoshimoto S, et al. Wireless monitoring using a stretchable and transparent sensor sheet containing metal nanowires. Adv Mater 2020;32:e1902684.
49. Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat Commun 2022;13:4200.
50. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 2011;6:788-92.
51. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 2022;15:1012.
52. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.
53. Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021;177:377-402.
54. Vo TT, Lee HJ, Kim SY, Suk JW. Synergistic effect of graphene/silver nanowire hybrid fillers on highly stretchable strain sensors based on spandex composites. Nanomaterials 2020;10:2063.
55. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019;3:58-68.
56. Gao Y, Ota H, Schaler EW, et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv Mater 2017;29:1701985.
57. Luo Y, Abidian MR, Ahn JH, et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023;17:5211-95.
58. Mishra RB, El‐atab N, Hussain AM, Hussain MM. Recent progress on flexible capacitive pressure sensors: from design and materials to applications. Adv Mater Technol 2021;6:2001023.
59. Huang Y, Fan X, Chen S, Zhao N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv Funct Mater 2019;29:1808509.
60. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater Sci Technol 2020;43:175-88.
61. Yu A, Zhu Y, Wang W, Zhai J. Progress in triboelectric materials: toward high performance and widespread applications. Adv Funct Mater 2019;29:1900098.
62. Yang L, Chen Z, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater 2018;8:1701797.
63. Zhang D, Wu H, Bowen CR, Yang Y. Recent advances in pyroelectric materials and applications. Small 2021;17:e2103960.
64. Dinh T, Phan H, Qamar A, Woodfield P, Nguyen N, Dao DV. Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J Microelectromech S 2017;26:966-86.
65. He Z, Chen W, Liang B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl Mater Interfaces 2018;10:12816-23.
66. Ma Y, Pharr M, Wang L, et al. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics. Small 2017;13:1602954.
67. Yang J, Liu Q, Deng Z, et al. Ionic liquid-activated wearable electronics. Mater Today Phys 2019;8:78-85.
68. Joh H, Lee WS, Kang MS, et al. Surface design of nanocrystals for high-performance multifunctional sensors in wearable and attachable electronics. Chem Mater 2019;31:436-44.
69. Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines 2018;9:580.
70. Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction 2019;7:2-17.
71. Shin SH, Park DH, Jung JY, Lee MH, Nah J. Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing. ACS Appl Mater Interfaces 2017;9:9233-8.
72. Gao Z, Lou Z, Han W, Shen G. A self-healable bifunctional electronic skin. ACS Appl Mater Interfaces 2020;12:24339-47.
73. An BW, Heo S, Ji S, Bien F, Park JU. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun 2018;9:2458.
74. Wang Z, Zhang L, Liu J, Li C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection. Nanoscale 2019;11:14242-9.
75. Kim K, Jung M, Kim B, et al. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy 2017;41:301-7.
76. Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 2013;4:1543.
77. Kim JO, Kwon SY, Kim Y, et al. Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS Appl Mater Interfaces 2019;11:1503-11.
78. Song K, Zhao R, Wang ZL, Yang Y. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv Mater 2019;31:e1902831.
79. Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz 2017;4:694-700.
80. Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, Yuan J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater 2020;32:e1907156.
81. Šakalys R, Mohammadlou BS, Raghavendra R. Fabrication of multi-material electronic components applying non-contact printing technologies: a review. Results Eng 2022;15:100578.
82. Ojuri BA. Printed electronics: capabilities and potentials for intelligent interactive packaging. 2022. Available from: https://www.theseus.fi/bitstream/handle/10024/750269/Ojuri_Babakolade%20Adefolu.pdf?sequence=2 [Last accessed on 20 Jul 2023].
83. Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 2015;15:3164-85.
84. Grau G, Cen J, Kang H, Kitsomboonloha R, Scheideler WJ, Subramanian V. Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flex Print Electron 2016;1:023002.
85. Assaifan AK, Al Habis N, Ahmad I, Alshehri NA, Alharbi HF. Scaling-up medical technologies using flexographic printing. Talanta 2020;219:121236.
86. He P, Cao J, Ding H, et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl Mater Interfaces 2019;11:32225-34.
87. Patidar R, Burkitt D, Hooper K, Richards D, Watson T. Slot-die coating of perovskite solar cells: an overview. Mater Today Commun 2020;22:100808.
88. Choi J, Kim Y, Lee S, et al. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Applied Physics Letters 2008;93:193508.
89. Ohsawa M, Hashimoto N. Flexible and transparent silver-grid over-coated with PEDOT: PSS electrode prepared by gravure offset printing. In: 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC); 2018 Apr 17-21;Mie, Japan. IEEE;2018.p. 509-513.
90. Shah MA, Lee D, Lee B, Hur S. Classifications and applications of inkjet printing technology: a review. IEEE ACcess 2021;9:140079-102.
91. Luo H, Pang G, Xu K, Ye Z, Yang H, Yang G. A fully printed flexible sensor sheet for simultaneous proximity-pressure-temperature detection. Adv Mater Technol 2021;6:2100616.
92. Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv 2016;2:e1601473.
93. Harada S, Honda W, Arie T, Akita S, Takei K. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 2014;8:3921-7.
94. Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 2020;11:5381.
95. Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022;7:eabl7344.
96. Liu F, Deswal S, Christou A, et al. Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci Robot 2022;7:eabl7286.
97. Liu Y, Yiu C, Song Z, et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci Adv 2022;8:eabl6700.
98. Zeng X, Peng R, Fan Z, Lin Y. Self-powered and wearable biosensors for healthcare. Mater Today Energy 2022;23:100900.
99. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.
100. Zhu J, Ren Z, Lee C. Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification. ACS Nano 2021;15:894-903.
101. Wang Y, Xu C, Yu X, Zhang H, Han M. Multilayer flexible electronics: manufacturing approaches and applications. Mater Today Phys 2022;23:100647.
102. Wei X, Li H, Yue W, et al. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022;5:1481-501.
103. Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater 2022;34:e2202622.