REFERENCES

1. Su L, Wang D, Wang S, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022;375:1385-9.

2. Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021;371:722-7.

3. Mao J, Chen G, Ren Z. Thermoelectric cooling materials. Nat Mater 2021;20:454-61.

4. Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019;365:495-8.

5. Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T. Thermoelectric materials and applications for energy harvesting power generation. Sci Technol Adv Mater 2018;19:836-62.

6. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: from materials to applications. Mater Today 2021;46:62-108.

7. Tang X, Li Z, Liu W, Zhang Q, Uher C. A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond. Interdiscip Mater 2022;1:88-115.

8. Zhao LD, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016;351:141-4.

9. Qin B, Wang D, Liu X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021;373:556-61.

10. Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater 2017;29:1605884.

11. Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater 2012;24:6125-35.

12. Kato K, Hagino H, Miyazaki K. Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method. J Electron Mater 2013;42:1313-8.

13. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.

14. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011;473:66-9.

15. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105-14.

16. Beretta D, Neophytou N, Hodges JM, et al. Thermoelectrics: from history, a window to the future. Mater Sci Eng R Rep 2019;138:100501.

17. Cao T, Shi X, Chen Z. Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 2023;131:101003.

18. Chen W, Shi X, Zou J, Chen Z. Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater Sci Eng R Rep 2022;151:100700.

19. Hong M, Chen ZG, Yang L, Zou J. BixSb2-xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy 2016;20:144-55.

20. Hong M, Wang Y, Xu S, et al. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy 2019;60:1-7.

21. Hong M, Zou J, Chen ZG. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv Mater 2019;31:e1807071.

22. Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge1−xyCdxBiyTe with band convergence. Adv Energy Mater 2018;8:1801837.

23. Yu Y, Zhou C, Zhang S, et al. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Mater Today 2020;32:260-74.

24. Kim W. Strategies for engineering phonon transport in thermoelectrics. J Mater Chem C 2015;3:10336-48.

25. Han C, Sun Q, Li Z, Dou SX. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater 2016;6:1600498.

26. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61.

27. Chen Z, Zhang X, Pei Y. Manipulation of Phonon transport in thermoelectrics. Adv Mater 2018;30:e1705617.

28. Wu Y, Chen Z, Nan P, et al. Lattice strain advances thermoelectrics. Joule 2019;3:1276-88.

29. Kato K, Kuriyama K, Yabuki T, Miyazaki K. Organic-inorganic thermoelectric material for a printed generator. J Phys Conf Ser 2018;1052:012008.

30. Daniels LM, Savvin SN, Pitcher MJ, et al. Phonon-glass electron-crystal behaviour by a site disorder in n-type thermoelectric oxides. Energy Environ Sci 2017;10:1917-22.

31. Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric materials. Angew Chem Int Ed Engl 2016;55:6826-41.

32. Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022;375:1261-5.

33. Hong M, Li M, Wang Y, Shi XL, Chen ZG. Advances in versatile GeTe thermoelectrics from materials to devices. Adv Mater 2023;35:e2208272.

34. Hong M, Chen ZG. Chemistry in advancing thermoelectric GeTe materials. Acc Chem Res 2022;55:3178-90.

35. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci 2016;3:1600004.

36. Hong M, Zou J, Chen Z. 4 - Synthesis of thermoelectric materials. In: Ranjan Kumar, Ranber Singh, editors. Thermoelectricity and advanced thermoelectric materials. Woodhead Publishing; 2021. p. 73-103.

37. Liu W, Chen Z, Zou J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv Energy Mater 2018;8:1800056.

38. Miyazaki K, Kuriyama K, Yabuki T. Printable thermoelectric device. J Phys Conf Ser 2019;1407:012057.

39. Chen WC, Wu YC, Hwang WS, Hsieh HL, Huang JY, Huang TK. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3. IOP Conf Ser Mater Sci Eng 2015;84:012094.

40. Müller G, Rudolph P. Crystal growth from the melt. In: K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssière, editors. Encyclopedia of materials: science and technology. Elsevier; 2001. p. 1866-72.

41. Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater 2017;29:1606768.

42. Chen Z, Ge B, Li W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun 2017;8:13828.

43. Li L, Xu S, Li G. Epitaxial growth and thermoelectric measurement of Bi2Te3/Sb superlattice nanowires. Chin J Chem Phys 2016;29:365-8.

44. Kumar P, Pfeffer M, Peranio N, et al. Ternary, single-crystalline Bi2(Te,Se)3 nanowires grown by electrodeposition. Acta Mater 2017;125:238-45.

45. Lee J, Kim J, Moon W, Berger A, Lee J. Enhanced seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process. J Phys Chem C 2012;116:19512-6.

46. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001;413:597-602.

47. Cao T, Shi X, Li M, et al. Advances in bismuth-telluride-based thermoelectric devices: progress and challenges. eScience 2023;3:100122.

48. Sekine C, Mori Y. Development of thermoelectric materials using high-pressure synthesis technique. Jpn J Appl Phys 2017;56:05FA09.

49. Hu T, Cao W, Yang D, et al. Ultra-fast fabrication of bulk ZrNiSn thermoelectric material through self-propagating high-temperature synthesis combined with in-situ quick pressing. Scr Mater 2019;165:140-4.

50. Burton M, Howells G, Atoyo J, Carnie M. Printed thermoelectrics. Adv Mater 2022;34:e2108183.

51. Zang J, Chen J, Chen Z, et al. Printed flexible thermoelectric materials and devices. J Mater Chem A 2021;9:19439-64.

52. Kroon R, Mengistie DA, Kiefer D, et al. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem Soc Rev 2016;45:6147-64.

53. Bharti M, Singh A, Samanta S, Aswal D. Conductive polymers for thermoelectric power generation. Prog Mater Sci 2018;93:270-310.

54. Kim SJ, We JH, Cho BJ. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci 2014;7:1959.

55. We JH, Kim SJ, Cho BJ. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 2014;73:506-12.

56. Varghese T, Dun C, Kempf N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv Funct Mater 2020;30:1905796.

57. Varghese T, Hollar C, Richardson J, et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci Rep 2016;6:33135.

58. Chen A, Madan D, Wright PK, Evans JW. Dispenser-printed planar thick-film thermoelectric energy generators. J Micromech Microeng 2011;21:104006.

59. Madan D, Wang Z, Chen A, et al. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl Mater Interfaces 2012;4:6117-24.

60. Peng J, Witting I, Geisendorfer N, et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat Commun 2019;10:5590.

61. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy 2018;3:301-9.

62. Ferhat S, Domain C, Vidal J, Noël D, Ratier B, Lucas B. Flexible thermoelectric device based on TiS2(HA)x n-type nanocomposite printed on paper. Org Electron 2019;68:256-63.

63. Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh DJ, Zhang Y. 3D printing of solution-processable 2D nanoplates and 1D nanorods for flexible thermoelectrics with ultrahigh power factor at low-medium temperatures. Adv Sci 2019;6:1901788.

64. Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 2016;10:5730-9.

65. Hong CT, Kang YH, Ryu J, Cho SY, Jang K. Spray-printed CNT/P3HT organic thermoelectric films and power generators. J Mater Chem A 2015;3:21428-33.

66. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 2016;1:1-14.

67. Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 2014;26:6829-51.

68. He M, Qiu F, Lin Z. Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 2013;6:1352.

69. Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater 2016;28:4373-95.

70. Zheng Z, Shi X, Ao D, et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain 2023;6:180-91.

71. Kim SJ, Choi H, Kim Y, et al. Post ionized defect engineering of the screen-printed Bi 2 Te 2.7 Se 0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017;31:258-63.

72. Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 2021;121:100840.

73. Sun S, Li M, Shi X, Chen Z. Advances in ionic thermoelectrics: from materials to devices. Adv Energy Mater 2023;13:2203692.

74. Chang P, Liao C. Screen-printed flexible thermoelectric generator with directional heat collection design. J Alloys Compd 2020;836:155471.

75. Cao Z, Koukharenko E, Tudor M, Torah R, Beeby S. Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens Actuators A Phys 2016;238:196-206.

76. Yuan Z, Tang X, Xu Z, et al. Screen-printed radial structure micro radioisotope thermoelectric generator. Appl Energy 2018;225:746-54.

77. Xu S, Li M, Hong M, et al. Optimal array alignment to deliver high performance in flexible conducting polymer-based thermoelectric devices. J Mater Sci Technol 2022;124:252-9.

78. Xu S, Li M, Dai Y, et al. Realizing a 10 ℃ cooling effect in a flexible thermoelectric cooler using a vortex generator. Adv Mater 2022;34:e2204508.

79. Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.

80. Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 2023;15:6025-51.

81. Liang J, Wang T, Qiu P, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci 2019;12:2983-90.

82. Tan M, Liu W, Shi X, Sun Q, Chen Z. Minimization of the electrical contact resistance in thin-film thermoelectric device. Appl Phys Rev 2023;10:021404.

83. Du J, Zhang B, Jiang M, et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires. Adv Funct Mater 2023;33:2213564.

84. Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv Funct Mater 2018;28:1800480.

85. Hu Q, Liu W, Zhang L, et al. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing. J Chem Eng 2023;457:141024.

86. Wu H, Shi X, Duan J, Liu Q, Chen Z. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ Sci 2023;16:1870-906.

87. Zhang L, Xia B, Shi X, et al. Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping. Carbon 2022;196:718-26.

88. Saeidi-javash M, Kuang W, Dun C, Zhang Y. 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Adv Funct Mater 2019;29:1901930.

89. Kee S, Haque MA, Corzo D, Alshareef HN, Baran D. Self-healing and stretchable 3D-printed organic thermoelectrics. Adv Funct Mater 2019;29:1905426.

90. Jang E, Banerjee P, Huang J, Madan D. High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials. Appl Energy 2021;294:117006.

91. Zhang Z, Qiu J, Wang S. Roll-to-roll printing of flexible thin-film organic thermoelectric devices. Manuf Lett 2016;8:6-10.

92. Søndergaard RR, Hösel M, Espinosa N, Jørgensen M, Krebs FC. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci Eng 2013;1:81-8.

93. Stuart BW, Morgan K, Tao X, et al. Linear electron beam assisted roll-to-roll in-vacuum flexographic patterning for flexible thermoelectric generators. Coatings 2021;11:1470.

94. Hwang S, Jeong I, Park J, et al. Enhanced output performance of all-solution-processed organic thermoelectrics: spray printing and interface engineering. ACS Appl Mater Interfaces 2020;12:26250-7.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/