REFERENCES

1. Cho KW, Lee WH, Kim BS, Kim DH. Sensors in heart-on-a-chip: a review on recent progress. Talanta 2020;219:121269.

2. Sunwoo S, Han SI, Joo H, et al. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 2020;3:1923-47.

3. Squair JW, Gautier M, Mahe L, et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 2021;590:308-14.

4. Hong YJ, Lee H, Kim J, et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv Funct Mater 2018;28:1805754.

5. Song J, Son D, Kim J, et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv Funct Mater 2017;27:1605286.

6. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.

7. Konstantinidis D, Iliakis P, Tatakis F, et al. Wearable blood pressure measurement devices and new approaches in hypertension management: the digital era. J Hum Hypertens 2022;36:945-51.

8. Choi MK, Park OK, Choi C, et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv Healthc Mater 2016;5:80-7.

9. Sunwoo SH, Cha MJ, Han SI, et al. Ventricular tachyarrhythmia treatment and prevention by subthreshold stimulation with stretchable epicardial multichannel electrode array. Sci Adv 2023;9:eadf6856.

10. Kim HJ, Jung D, Sunwoo S, Jung S, Koo JH, Kim D. Integration of conductive nanocomposites and nanomembranes for high‐performance stretchable conductors. Adv Nanobiomed Res 2023;3:2200153.

11. Hong YJ, Jeong H, Cho KW, Lu N, Kim D. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 2019;29:1808247.

12. Kim SJ, Cho KW, Cho HR, et al. Stretchable and transparent biointerface using cell-sheet-graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv Funct Mater 2016;26:3207-17.

13. Joo H, Lee Y, Kim J, et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci Adv 2021;7:eabd4639.

14. Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016;11:566-72.

15. Lee H, Song C, Hong YS, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 2017;3:e1601314.

16. Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev 2022;9:021312.

17. Kim H, Yoo S, Joo H, et al. Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Sci Adv 2022;8:eabo4610.

18. Lee M, Shim HJ, Choi C, Kim DH. Soft high-resolution neural interfacing probes: materials and design approaches. Nano Lett 2019;19:2741-9.

19. Yoo S, Lee J, Joo H, Sunwoo SH, Kim S, Kim DH. Wireless power transfer and telemetry for implantable bioelectronics. Adv Healthc Mater 2021;10:e2100614.

20. Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu Rev Chem Biomol Eng 2021;12:359-91.

21. Zhang H, Xie L, Shen X, et al. Catechol/polyethyleneimine conversion coating with enhanced corrosion protection of magnesium alloys: potential applications for vascular implants. J Mater Chem B 2018;6:6936-49.

22. Morais LS, Serra GG, Muller CA, et al. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater 2007;3:331-9.

23. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-63.

24. Shim HJ, Sunwoo SH, Kim Y, Koo JH, Kim DH. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv Healthc Mater 2021;10:e2002105.

25. Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 2019;29:1806220.

26. Kang T, Cha GD, Park OK, et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano 2023;17:5435-47.

27. Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv 2021;7:eabd3716.

28. Cha GD, Lee WH, Sunwoo SH, et al. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications. ACS Nano 2022;16:554-67.

29. Lim C, Shin Y, Jung J, Kim JH, Lee S, Kim D. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 2019;7:031502.

30. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67.

31. Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron 2023;6:137-45.

32. Song JK, Kim J, Yoon J, et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat Nanotechnol 2022;17:849-56.

33. Cho KW, Sunwoo SH, Hong YJ, et al. Soft bioelectronics based on nanomaterials. Chem Rev 2022;122:5068-143.

34. Jung D, Lim C, Park C, et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv Mater 2022;34:e2200980.

35. Park J, Choi S, Janardhan AH, et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl Med 2016;8:344ra86.

36. Lee W, Yun H, Song J, Sunwoo S, Kim D. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc Mater Res 2021;2:266-81.

37. Sunwoo SH, Han SI, Jung D, et al. Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ formed Pt nanoparticles for wearable and implantable device. ACS Nano 2023;17:7550-61.

38. Sunwoo S, Han SI, Kang H, et al. Stretchable low-impedance nanocomposite comprised of Ag-Au core-shell nanowires and Pt black for epicardial recording and stimulation. Adv Mater Technol 2020;5:1900768.

39. Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale 2020;12:10456-73.

40. Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019;48:1566-95.

41. Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020;16:1906270.

42. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.

43. Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv Funct Mater 2017;27:1704353.

44. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.

45. Niu X, Peng S, Liu L, Wen W, Sheng P. Characterizing and patterning of PDMS-based conducting composites. Adv Mater 2007;19:2682-6.

46. Lv R, Xu W, Na B, Chen B. Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic elastomer: a strain dependent electrical conductivity study. J Macromol Sci 2008;47:774-82.

47. Kong J, Jang N, Kim S, Kim J. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014;77:199-207.

48. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 2011;10:424-8.

49. Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016;354:1257-60.

50. Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano 2017;11:7634-41.

51. Lee WH, Suk JW, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 2012;6:1284-90.

52. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 2009;8:494-9.

53. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 2018;28:1704195.

54. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 2011;6:788-92.

55. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.

56. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater 2019;31:e1801072.

57. Hu L, Pasta M, Mantia FL, et al. Stretchable, porous, and conductive energy textiles. Nano Lett 2010;10:708-14.

58. Qiu L, Liu D, Wang Y, et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater 2014;26:3333-7.

59. Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol 2021;16:1019-29.

60. Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R. Synthesis of large area graphene for high performance in flexible optoelectronic devices. Sci Rep 2015;5:16744.

61. Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater 2020;30:1907678.

62. Xia S, Song S, Jia F, Gao G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 2019;7:4638-48.

63. Ojha S, Acharya SK, Raghavendra G. Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym Sci 2015:132.

64. Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009;457:706-10.

65. Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.

66. Lee H, Lee Y, Song C, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 2015;6:10059.

67. Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv 2017;3:e1700159.

68. Shi G, Lowe SE, Teo AJ, et al. A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl Mater Today 2019;16:482-92.

69. Sun Y, Li D, Kim JU, et al. Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for multifunctional wearable devices. Carbon 2021;171:758-67.

70. Wu J, Wang H, Su Z, et al. Highly flexible and sensitive wearable e-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS Appl Mater Interfaces 2017;9:38745-54.

71. Amjadi M, Turan M, Clementson CP, Sitti M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS Appl Mater Interfaces 2016;8:5618-26.

72. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science 2008;321:1468-72.

73. Gu X, Li S, Xiao Y, et al. Exposure to black carbon is associated with dermographism: a population-based study in college students. Australas J Dermatol 2022;63:e86-8.

74. Serup J. How to diagnose and classify tattoo complications in the clinic: a system of distinctive patterns. In: Serup J, Bäumler W, editors. Diagnosis and Therapy of Tattoo Complications. S. Karger AG; 2017. p. 58-73.

75. Fusco L, Garrido M, Martín C, et al. Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale 2020;12:610-22.

76. Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul Toxicol Pharmacol 2011;61:276-81.

77. Liu Y, Feig VR, Bao Z. Conjugated polymer for implantable electronics toward clinical application. Adv Healthc Mater 2021;10:e2001916.

78. Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater 2010;11:014107.

79. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018;555:83-8.

80. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 2018;118:6766-843.

81. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.

82. Deslouis C, El Moustafid T, Musiani M, Tribollet B. Mixed ionic-electronic conduction of a conducting polymer film. Ac impedance study of polypyrrole. Electrochimica Acta 1996;41:1343-9.

83. Tan P, Wang H, Xiao F, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat Commun 2022;13:358.

84. Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022;13:2101.

85. Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 2018;9:2740.

86. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019;3:58-68.

87. Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022;375:1411-7.

88. Pomfret SJ, Adams PN, Comfort NP, Monkman AP. Inherently electrically conductive fibers wet spun from a sulfonic acid-doped polyaniline solution. Adv Mater 1998;10:1351-3.

89. Cho S, Lee JS, Joo H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications. Polymers 2019;11:1965.

90. Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 2015;15:7736-41.

91. Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synthetic Metals 2012;162:722-7.

92. Lalegül-ülker Ö, Elçin AE, Elçin YM. Intrinsically conductive polymer nanocomposites for cellular applications. In: Chun HJ, Park CH, Kwon IK, Khang G, editors. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer; 2018. p. 135-53.

93. Choi S, Park J, Hyun W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015;9:6626-33.

94. Ma R, Kang B, Cho S, Choi M, Baik S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 2015;9:10876-86.

95. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol 2017;12:907-13.

96. Zhang A, Lee JH, Lieber CM. Nanowire-enabled bioelectronics. Nano Today 2021;38:101135.

97. Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013;500:59-63.

98. Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 2011;23:2946-50.

99. Ma R, Lee J, Choi D, Moon H, Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 2014;14:1944-51.

100. Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater 2016;28:5986-96.

101. Jiang Z, Nayeem MOG, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 2019;31:e1903446.

102. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014;22:116-27.

103. Lim G, Kwak SS, Kwon N, et al. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 2017;42:300-6.

104. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 2014;5:3132.

105. Yang M, Hood ZD, Yang X, Chi M, Xia Y. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation. Chem Commun 2017;53:1965-8.

106. Lim C, Park C, Sunwoo SH, et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 2022;16:10431-42.

107. Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56.

108. Paladini F, Sannino A, Pollini M. In vivo testing of silver treated fibers for the evaluation of skin irritation effect and hypoallergenicity. J Biomed Mater Res B Appl Biomater 2014;102:1031-7.

109. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 2018;98:257-67.

110. Bomhard EM. The toxicology of indium oxide. Environ Toxicol Pharmacol 2018;58:250-8.

111. Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold. Nanotoxicology 2020;14:1096-117.

112. Gupta R, Rai B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys Chem B 2016;120:7133-42.

113. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073-111.

114. Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv Mater 2021;33:e2103104.

115. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.

116. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.

117. Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater Interfaces 2020;12:50852-9.

118. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 2021;20:533-40.

119. Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. J Polym Sci 2022;60:1300-27.

120. Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications. Adv Intell Syst 2022;4:2200282.

121. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32.

122. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury - current exposures and clinical manifestations. N Engl J Med 2003;349:1731-7.

123. Kalantar-zadeh K, Rahim MA, Tang J. Low melting temperature liquid metals and their impacts on physical chemistry. Acc Mater Res 2021;2:577-80.

124. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small 2020;16:1903391.

125. Malakooti MH, Bockstaller MR, Matyjaszewski K, Majidi C. Liquid metal nanocomposites. Nanoscale Adv 2020;2:2668-77.

126. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 2015;11:6397-403.

127. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.

128. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 2018;10:28232-41.

129. Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid-liquid patterns. Adv Mater 2019;31:e1807811.

130. Xu Y, Lin Z, Rajavel K, et al. Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nanomicro Lett 2021;14:29.

131. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.

132. Mou L, Qi J, Tang L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 2020;16:e2005336.

133. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater 2021;20:851-8.

134. Zhao Y, Huang X. Mechanisms and materials of flexible and stretchable skin sensors. Micromachines 2017;8:69.

135. Xu Y, Guo W, Zhou S, et al. Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health monitoring. Adv Funct Materials 2022;32:2200961.

136. Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36.

137. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater 2021;20:859-68.

138. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30.

139. Jiang Y, Ji S, Sun J, et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023;614:456-62.

140. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented reality. Adv Funct Mater 2021;31:2009602.

141. Choi C, Choi MK, Hyeon T, Kim D. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016;2:1006-17.

142. Zheng Z, Xia J, Wang B, Guo Y. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical energy harvester and smart home system. Nano Energy 2022;95:107047.

143. Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D. Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv Mater Technol 2017;2:1700053.

144. Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62.

145. Kwak SS, Yoo S, Avila R, et al. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv Mater 2021;33:e2103974.

146. Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano 2020;14:6449-69.

147. Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials 2020;13:3947.

148. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater 2016;28:722-8.

149. Ha KH, Zhang W, Jang H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv Mater 2021;33:e2103320.

150. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.

151. Jang H, Sel K, Kim E, et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat Commun 2022;13:6604.

152. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020;11:4683.

153. Kim D, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater 2008;20:4887-92.

154. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv Mater 2022;34:2270236.

155. Yao S, Zhou W, Hinson R, et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv Mater Technol 2022;7:2101637.

156. Li Y, Yang D, Wu Z, et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano Energy 2023;109:108324.

157. Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose nanofiber-reinforced conductive nanocomposite hydrogel for wearable motion-monitoring sensor. J Colloid Interface Sci 2022;615:215-26.

158. Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90.

159. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 2021;18:581-99.

160. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat Commun 2020;11:3823.

161. Zu W, Ohm Y, Carneiro MR, Vinciguerra M, Tavakoli M, Majidi C. A comparative study of silver microflakes in digitally printable liquid metal embedded elastomer inks for stretchable electronics. Adv Mater Technol 2022;7:2200534.

162. Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex Electron 2022;6:41.

163. Roberts P, Zadan M, Majidi C. Soft tactile sensing skins for robotics. Curr Robot Rep 2021;2:343-54.

164. Feng Y, Yu J, Sun D, Ren W, Shao C, Sun R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem Eng J 2022;433:133202.

165. Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl Electron Mater 2020;2:2282-300.

166. Zhou Y, Lian H, Li Z, et al. Crack engineering boosts the performance of flexible sensors. VIEW 2022;3:20220025.

167. Sun H, Fang X, Fang Z, et al. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsyst Nanoeng 2022;8:111.

168. Wang S, Xiao P, Liang Y, et al. Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J Mater Chem C 2018;6:5140-7.

169. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014;8:5154-63.

170. Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater 2013;25:578-83.

171. Lee H, Kwon D, Cho H, Park I, Kim J. Soft nanocomposite based multi-point, multi-directional strain mapping sensor using anisotropic electrical impedance tomography. Sci Rep 2017;7:39837.

172. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020;587:219-24.

173. Yun T, Du J, Ji X, et al. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023;313:120898.

174. Hasan MR, Sharma P, Suleman S, et al. Papertronics: marriage between paper and electronics becoming a real scenario in resource-limited settings. ACS Appl Bio Mater 2023;6:1368-79.

175. Solak İ, Gençer Ş, Yıldırım B, Öznur E, Hah D, Icoz K. Respiration monitoring using a paper-based wearable humidity sensor, a step forward to clinical tests. Sens Actuator A Phys 2023;355:114316.

176. Li T, Sakthivelpathi V, Qian Z, et al. Ultrasensitive capacitive sensor composed of nanostructured electrodes for human-machine interface. Adv Mater Technol 2022;7:2101704.

177. Zhang J, Goodman SM, Wise HG, Dichiara AB, Chung J. Electromechanical coupling of isotropic fibrous networks with tailored auxetic behavior induced by water-printing under tension. J Mater Chem C 2021;9:4544-53.

178. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 2015;27:2433-9.

179. Su X, Wu X, Chen S, et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv Mater 2022;34:2200682.

180. Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021;15:11555-63.

181. Yin T, Cheng Y, Hou Y, et al. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 2022;18:e2204806.

182. Yang C, Li L, Zhao J, et al. Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of polypyrrole films. ACS Appl Mater Interfaces 2018;10:25811-8.

183. Wang D, Zhou X, Song R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem Eng J 2021;404:126940.

184. Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng 2023; doi: 10.1038/s41551-023-01022-4.

185. Li AL, Zhu S, Hu ZH, Peng Q, Fang X, Zhang YY. The distribution and epidemic characteristics of cerebrovascular disease in followed-up hypertension patients. Sci Rep 2021;11:9366.

186. Jaffey JA, Wiggen K, Leach SB, Masseau I, Girens RE, Reinero CR. Pulmonary hypertension secondary to respiratory disease and/or hypoxia in dogs: clinical features, diagnostic testing and survival. Vet J 2019;251:105347.

187. Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv Funct Mater 2016;26:1178-87.

188. Lou Y, Liu H, Zhang J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem Eng J 2020;399:125732.

189. Ning C, Dong K, Cheng R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 2021;31:2006679.

190. Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng 2021;7:75.

191. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 2013;3:12.

192. Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020;219:121145.

193. Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthc Mater 2018;7:e1701150.

194. Zhai Q, Yap LW, Wang R, et al. Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis. Anal Chem 2020;92:4647-55.

195. Oh SY, Hong SY, Jeong YR, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces 2018;10:13729-40.

196. Garg V, Gupta T, Rani S, et al. A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Compos Sci Technol 2021;213:108894.

197. Shu Y, Su T, Lu Q, Shang Z, Xu Q, Hu X. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem 2021;93:16222-30.

198. Chandran N, Janardhanan P, Bayal M, Pilankatta R, Nair SS. Development of a paper printed colorimetric sensor based on Cu-Curcumin nanoparticles for evolving point-of-care clinical diagnosis of sodium. Sci Rep 2022;12:6247.

199. Lim H, Lee Y, Jones KA, et al. All-in-one, wireless, fully flexible sodium sensor system with integrated Au/CNT/Au nanocomposites. Sens Actuators B Chem 2021;331:129416.

200. Khalid MAU, Chang SH. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos Struct 2022;284:115214.

201. Said RAM, Hasan MA, Abdelzaher AM, Abdel-raoof AM. Review - insights into the developments of nanocomposites for its processing and application as sensing materials. J Electrochem Soc 2020;167:037549.

202. Shameem M, Sasikanth S, Annamalai R, Ganapathi Raman R. A brief review on polymer nanocomposites and its applications. Mater Today 2021;45:2536-9.

203. Guo L, Ma M, Zhang N, Langer R, Anderson DG. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv Mater 2014;26:1427-33.

204. Li Y, Gao Y, Lan L, et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. npj Flex Electron 2022;6:42.

205. Guan YS, Zhang Z, Tang Y, Yin J, Ren S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv Mater 2018;30:1706390.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/