REFERENCES
1. Cho KW, Lee WH, Kim BS, Kim DH. Sensors in heart-on-a-chip: a review on recent progress. Talanta 2020;219:121269.
2. Sunwoo S, Han SI, Joo H, et al. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 2020;3:1923-47.
3. Squair JW, Gautier M, Mahe L, et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 2021;590:308-14.
4. Hong YJ, Lee H, Kim J, et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv Funct Mater 2018;28:1805754.
5. Song J, Son D, Kim J, et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv Funct Mater 2017;27:1605286.
6. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.
7. Konstantinidis D, Iliakis P, Tatakis F, et al. Wearable blood pressure measurement devices and new approaches in hypertension management: the digital era. J Hum Hypertens 2022;36:945-51.
8. Choi MK, Park OK, Choi C, et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv Healthc Mater 2016;5:80-7.
9. Sunwoo SH, Cha MJ, Han SI, et al. Ventricular tachyarrhythmia treatment and prevention by subthreshold stimulation with stretchable epicardial multichannel electrode array. Sci Adv 2023;9:eadf6856.
10. Kim HJ, Jung D, Sunwoo S, Jung S, Koo JH, Kim D. Integration of conductive nanocomposites and nanomembranes for high‐performance stretchable conductors. Adv Nanobiomed Res 2023;3:2200153.
11. Hong YJ, Jeong H, Cho KW, Lu N, Kim D. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 2019;29:1808247.
12. Kim SJ, Cho KW, Cho HR, et al. Stretchable and transparent biointerface using cell-sheet-graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv Funct Mater 2016;26:3207-17.
13. Joo H, Lee Y, Kim J, et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci Adv 2021;7:eabd4639.
14. Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016;11:566-72.
15. Lee H, Song C, Hong YS, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 2017;3:e1601314.
16. Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev 2022;9:021312.
17. Kim H, Yoo S, Joo H, et al. Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Sci Adv 2022;8:eabo4610.
18. Lee M, Shim HJ, Choi C, Kim DH. Soft high-resolution neural interfacing probes: materials and design approaches. Nano Lett 2019;19:2741-9.
19. Yoo S, Lee J, Joo H, Sunwoo SH, Kim S, Kim DH. Wireless power transfer and telemetry for implantable bioelectronics. Adv Healthc Mater 2021;10:e2100614.
20. Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu Rev Chem Biomol Eng 2021;12:359-91.
21. Zhang H, Xie L, Shen X, et al. Catechol/polyethyleneimine conversion coating with enhanced corrosion protection of magnesium alloys: potential applications for vascular implants. J Mater Chem B 2018;6:6936-49.
22. Morais LS, Serra GG, Muller CA, et al. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater 2007;3:331-9.
23. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-63.
24. Shim HJ, Sunwoo SH, Kim Y, Koo JH, Kim DH. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv Healthc Mater 2021;10:e2002105.
25. Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 2019;29:1806220.
26. Kang T, Cha GD, Park OK, et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano 2023;17:5435-47.
27. Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv 2021;7:eabd3716.
28. Cha GD, Lee WH, Sunwoo SH, et al. Multifunctional injectable hydrogel for
29. Lim C, Shin Y, Jung J, Kim JH, Lee S, Kim D. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 2019;7:031502.
31. Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron 2023;6:137-45.
32. Song JK, Kim J, Yoon J, et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat Nanotechnol 2022;17:849-56.
33. Cho KW, Sunwoo SH, Hong YJ, et al. Soft bioelectronics based on nanomaterials. Chem Rev 2022;122:5068-143.
34. Jung D, Lim C, Park C, et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv Mater 2022;34:e2200980.
35. Park J, Choi S, Janardhan AH, et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl Med 2016;8:344ra86.
36. Lee W, Yun H, Song J, Sunwoo S, Kim D. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc Mater Res 2021;2:266-81.
37. Sunwoo SH, Han SI, Jung D, et al. Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ formed Pt nanoparticles for wearable and implantable device. ACS Nano 2023;17:7550-61.
38. Sunwoo S, Han SI, Kang H, et al. Stretchable low-impedance nanocomposite comprised of Ag-Au core-shell nanowires and Pt black for epicardial recording and stimulation. Adv Mater Technol 2020;5:1900768.
39. Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale 2020;12:10456-73.
40. Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019;48:1566-95.
41. Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020;16:1906270.
42. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.
43. Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv Funct Mater 2017;27:1704353.
44. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.
45. Niu X, Peng S, Liu L, Wen W, Sheng P. Characterizing and patterning of PDMS-based conducting composites. Adv Mater 2007;19:2682-6.
46. Lv R, Xu W, Na B, Chen B. Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic elastomer: a strain dependent electrical conductivity study. J Macromol Sci 2008;47:774-82.
47. Kong J, Jang N, Kim S, Kim J. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014;77:199-207.
48. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 2011;10:424-8.
49. Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016;354:1257-60.
50. Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano 2017;11:7634-41.
51. Lee WH, Suk JW, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 2012;6:1284-90.
52. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 2009;8:494-9.
53. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 2018;28:1704195.
54. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 2011;6:788-92.
55. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.
56. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater 2019;31:e1801072.
57. Hu L, Pasta M, Mantia FL, et al. Stretchable, porous, and conductive energy textiles. Nano Lett 2010;10:708-14.
58. Qiu L, Liu D, Wang Y, et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater 2014;26:3333-7.
59. Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol 2021;16:1019-29.
60. Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R. Synthesis of large area graphene for high performance in flexible optoelectronic devices. Sci Rep 2015;5:16744.
61. Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater 2020;30:1907678.
62. Xia S, Song S, Jia F, Gao G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 2019;7:4638-48.
63. Ojha S, Acharya SK, Raghavendra G. Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym Sci 2015:132.
64. Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009;457:706-10.
65. Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.
66. Lee H, Lee Y, Song C, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 2015;6:10059.
67. Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv 2017;3:e1700159.
68. Shi G, Lowe SE, Teo AJ, et al. A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl Mater Today 2019;16:482-92.
69. Sun Y, Li D, Kim JU, et al. Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for multifunctional wearable devices. Carbon 2021;171:758-67.
70. Wu J, Wang H, Su Z, et al. Highly flexible and sensitive wearable e-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS Appl Mater Interfaces 2017;9:38745-54.
71. Amjadi M, Turan M, Clementson CP, Sitti M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS Appl Mater Interfaces 2016;8:5618-26.
72. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science 2008;321:1468-72.
73. Gu X, Li S, Xiao Y, et al. Exposure to black carbon is associated with dermographism: a population-based study in college students. Australas J Dermatol 2022;63:e86-8.
74. Serup J. How to diagnose and classify tattoo complications in the clinic: a system of distinctive patterns. In: Serup J, Bäumler W, editors. Diagnosis and Therapy of Tattoo Complications. S. Karger AG; 2017. p. 58-73.
75. Fusco L, Garrido M, Martín C, et al. Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale 2020;12:610-22.
76. Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul Toxicol Pharmacol 2011;61:276-81.
77. Liu Y, Feig VR, Bao Z. Conjugated polymer for implantable electronics toward clinical application. Adv Healthc Mater 2021;10:e2001916.
78. Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater 2010;11:014107.
79. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018;555:83-8.
80. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 2018;118:6766-843.
81. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.
82. Deslouis C, El Moustafid T, Musiani M, Tribollet B. Mixed ionic-electronic conduction of a conducting polymer film. Ac impedance study of polypyrrole. Electrochimica Acta 1996;41:1343-9.
83. Tan P, Wang H, Xiao F, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat Commun 2022;13:358.
84. Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022;13:2101.
85. Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 2018;9:2740.
86. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019;3:58-68.
87. Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022;375:1411-7.
88. Pomfret SJ, Adams PN, Comfort NP, Monkman AP. Inherently electrically conductive fibers wet spun from a sulfonic acid-doped polyaniline solution. Adv Mater 1998;10:1351-3.
89. Cho S, Lee JS, Joo H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications. Polymers 2019;11:1965.
90. Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 2015;15:7736-41.
91. Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synthetic Metals 2012;162:722-7.
92. Lalegül-ülker Ö, Elçin AE, Elçin YM. Intrinsically conductive polymer nanocomposites for cellular applications. In: Chun HJ, Park CH, Kwon IK, Khang G, editors. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer; 2018. p. 135-53.
93. Choi S, Park J, Hyun W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015;9:6626-33.
94. Ma R, Kang B, Cho S, Choi M, Baik S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 2015;9:10876-86.
95. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol 2017;12:907-13.
97. Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013;500:59-63.
98. Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 2011;23:2946-50.
99. Ma R, Lee J, Choi D, Moon H, Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 2014;14:1944-51.
100. Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater 2016;28:5986-96.
101. Jiang Z, Nayeem MOG, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 2019;31:e1903446.
102. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014;22:116-27.
103. Lim G, Kwak SS, Kwon N, et al. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 2017;42:300-6.
104. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 2014;5:3132.
105. Yang M, Hood ZD, Yang X, Chi M, Xia Y. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation. Chem Commun 2017;53:1965-8.
106. Lim C, Park C, Sunwoo SH, et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 2022;16:10431-42.
107. Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56.
108. Paladini F, Sannino A, Pollini M. In vivo testing of silver treated fibers for the evaluation of skin irritation effect and hypoallergenicity. J Biomed Mater Res B Appl Biomater 2014;102:1031-7.
109. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 2018;98:257-67.
111. Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold. Nanotoxicology 2020;14:1096-117.
112. Gupta R, Rai B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys Chem B 2016;120:7133-42.
113. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073-111.
114. Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv Mater 2021;33:e2103104.
115. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.
117. Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater Interfaces 2020;12:50852-9.
118. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 2021;20:533-40.
119. Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. J Polym Sci 2022;60:1300-27.
120. Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications. Adv Intell Syst 2022;4:2200282.
121. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32.
122. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury - current exposures and clinical manifestations. N Engl J Med 2003;349:1731-7.
123. Kalantar-zadeh K, Rahim MA, Tang J. Low melting temperature liquid metals and their impacts on physical chemistry. Acc Mater Res 2021;2:577-80.
124. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small 2020;16:1903391.
125. Malakooti MH, Bockstaller MR, Matyjaszewski K, Majidi C. Liquid metal nanocomposites. Nanoscale Adv 2020;2:2668-77.
126. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 2015;11:6397-403.
127. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.
128. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 2018;10:28232-41.
129. Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid-liquid patterns. Adv Mater 2019;31:e1807811.
130. Xu Y, Lin Z, Rajavel K, et al. Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nanomicro Lett 2021;14:29.
131. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.
132. Mou L, Qi J, Tang L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 2020;16:e2005336.
133. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater 2021;20:851-8.
134. Zhao Y, Huang X. Mechanisms and materials of flexible and stretchable skin sensors. Micromachines 2017;8:69.
135. Xu Y, Guo W, Zhou S, et al. Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health monitoring. Adv Funct Materials 2022;32:2200961.
136. Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36.
137. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater 2021;20:859-68.
138. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30.
139. Jiang Y, Ji S, Sun J, et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023;614:456-62.
140. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented reality. Adv Funct Mater 2021;31:2009602.
141. Choi C, Choi MK, Hyeon T, Kim D. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016;2:1006-17.
142. Zheng Z, Xia J, Wang B, Guo Y. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical energy harvester and smart home system. Nano Energy 2022;95:107047.
143. Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D. Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv Mater Technol 2017;2:1700053.
144. Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62.
145. Kwak SS, Yoo S, Avila R, et al. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv Mater 2021;33:e2103974.
146. Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano 2020;14:6449-69.
147. Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials 2020;13:3947.
148. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater 2016;28:722-8.
149. Ha KH, Zhang W, Jang H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv Mater 2021;33:e2103320.
150. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.
151. Jang H, Sel K, Kim E, et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat Commun 2022;13:6604.
152. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020;11:4683.
153. Kim D, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater 2008;20:4887-92.
154. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv Mater 2022;34:2270236.
155. Yao S, Zhou W, Hinson R, et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv Mater Technol 2022;7:2101637.
156. Li Y, Yang D, Wu Z, et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano Energy 2023;109:108324.
157. Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose nanofiber-reinforced conductive nanocomposite hydrogel for wearable motion-monitoring sensor. J Colloid Interface Sci 2022;615:215-26.
158. Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90.
159. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 2021;18:581-99.
160. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat Commun 2020;11:3823.
161. Zu W, Ohm Y, Carneiro MR, Vinciguerra M, Tavakoli M, Majidi C. A comparative study of silver microflakes in digitally printable liquid metal embedded elastomer inks for stretchable electronics. Adv Mater Technol 2022;7:2200534.
162. Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex Electron 2022;6:41.
163. Roberts P, Zadan M, Majidi C. Soft tactile sensing skins for robotics. Curr Robot Rep 2021;2:343-54.
164. Feng Y, Yu J, Sun D, Ren W, Shao C, Sun R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem Eng J 2022;433:133202.
165. Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl Electron Mater 2020;2:2282-300.
166. Zhou Y, Lian H, Li Z, et al. Crack engineering boosts the performance of flexible sensors. VIEW 2022;3:20220025.
167. Sun H, Fang X, Fang Z, et al. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsyst Nanoeng 2022;8:111.
168. Wang S, Xiao P, Liang Y, et al. Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J Mater Chem C 2018;6:5140-7.
169. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014;8:5154-63.
170. Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater 2013;25:578-83.
171. Lee H, Kwon D, Cho H, Park I, Kim J. Soft nanocomposite based multi-point, multi-directional strain mapping sensor using anisotropic electrical impedance tomography. Sci Rep 2017;7:39837.
172. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020;587:219-24.
173. Yun T, Du J, Ji X, et al. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023;313:120898.
174. Hasan MR, Sharma P, Suleman S, et al. Papertronics: marriage between paper and electronics becoming a real scenario in resource-limited settings. ACS Appl Bio Mater 2023;6:1368-79.
175. Solak İ, Gençer Ş, Yıldırım B, Öznur E, Hah D, Icoz K. Respiration monitoring using a paper-based wearable humidity sensor, a step forward to clinical tests. Sens Actuator A Phys 2023;355:114316.
176. Li T, Sakthivelpathi V, Qian Z, et al. Ultrasensitive capacitive sensor composed of nanostructured electrodes for human-machine interface. Adv Mater Technol 2022;7:2101704.
177. Zhang J, Goodman SM, Wise HG, Dichiara AB, Chung J. Electromechanical coupling of isotropic fibrous networks with tailored auxetic behavior induced by water-printing under tension. J Mater Chem C 2021;9:4544-53.
178. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 2015;27:2433-9.
179. Su X, Wu X, Chen S, et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv Mater 2022;34:2200682.
180. Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021;15:11555-63.
181. Yin T, Cheng Y, Hou Y, et al. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 2022;18:e2204806.
182. Yang C, Li L, Zhao J, et al. Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of polypyrrole films. ACS Appl Mater Interfaces 2018;10:25811-8.
183. Wang D, Zhou X, Song R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem Eng J 2021;404:126940.
184. Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng 2023; doi: 10.1038/s41551-023-01022-4.
185. Li AL, Zhu S, Hu ZH, Peng Q, Fang X, Zhang YY. The distribution and epidemic characteristics of cerebrovascular disease in followed-up hypertension patients. Sci Rep 2021;11:9366.
186. Jaffey JA, Wiggen K, Leach SB, Masseau I, Girens RE, Reinero CR. Pulmonary hypertension secondary to respiratory disease and/or hypoxia in dogs: clinical features, diagnostic testing and survival. Vet J 2019;251:105347.
187. Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv Funct Mater 2016;26:1178-87.
188. Lou Y, Liu H, Zhang J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem Eng J 2020;399:125732.
189. Ning C, Dong K, Cheng R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 2021;31:2006679.
190. Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng 2021;7:75.
191. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 2013;3:12.
192. Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020;219:121145.
193. Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthc Mater 2018;7:e1701150.
194. Zhai Q, Yap LW, Wang R, et al. Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis. Anal Chem 2020;92:4647-55.
195. Oh SY, Hong SY, Jeong YR, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces 2018;10:13729-40.
196. Garg V, Gupta T, Rani S, et al. A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Compos Sci Technol 2021;213:108894.
197. Shu Y, Su T, Lu Q, Shang Z, Xu Q, Hu X. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem 2021;93:16222-30.
198. Chandran N, Janardhanan P, Bayal M, Pilankatta R, Nair SS. Development of a paper printed colorimetric sensor based on Cu-Curcumin nanoparticles for evolving point-of-care clinical diagnosis of sodium. Sci Rep 2022;12:6247.
199. Lim H, Lee Y, Jones KA, et al. All-in-one, wireless, fully flexible sodium sensor system with integrated Au/CNT/Au nanocomposites. Sens Actuators B Chem 2021;331:129416.
200. Khalid MAU, Chang SH. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos Struct 2022;284:115214.
201. Said RAM, Hasan MA, Abdelzaher AM, Abdel-raoof AM. Review - insights into the developments of nanocomposites for its processing and application as sensing materials. J Electrochem Soc 2020;167:037549.
202. Shameem M, Sasikanth S, Annamalai R, Ganapathi Raman R. A brief review on polymer nanocomposites and its applications. Mater Today 2021;45:2536-9.
203. Guo L, Ma M, Zhang N, Langer R, Anderson DG. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv Mater 2014;26:1427-33.
204. Li Y, Gao Y, Lan L, et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. npj Flex Electron 2022;6:42.