REFERENCES

1. Liu F, Han J, Qi J, et al. Research and application progress of intelligent wearable devices. Chinese J Anal Chem 2021;49:159-71.

2. Rahmani AM, Szu-han W, Yu-hsuan K, Haghparast M. The internet of things for applications in wearable technology. IEEE Access 2022;10:123579-94.

3. Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft wearable healthcare materials and devices. Adv Healthc Mater 2021;10:e2100577.

4. Karimi-Maleh H, Orooji Y, Karimi F, et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021;184:113252.

5. Lee S, Kim H, Park MJ, Jeon HJ. Current advances in wearable devices and their sensors in patients with depression. Front Psychiatry 2021;12:672347.

6. Abouzahra M, Ghasemaghaei M. Effective use of information technologies by seniors: the case of wearable device use. Eur J Inf Syst 2022;31:241-55.

7. Jiang D, Shi G. Research on data security and privacy protection of wearable equipment in healthcare. J Healthc Eng 2021;2021:6656204.

8. Yang B, Jiang X, Fang X, Kong J. Wearable chem-biosensing devices: from basic research to commercial market. Lab Chip 2021;21:4285-310.

9. Kim KK, Kim M, Pyun K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat Electron 2023;6:64-75.

10. Nurkahfi GN, Armi N, Mardiana VA, et al. Development of a low-cost wearable device for Covid-19 self-quarantine monitoring system. Public Health Pract 2022;4:100299.

11. Cho S, Ensari I, Weng C, Kahn MG, Natarajan K. Factors affecting the quality of person-generated wearable device data and associated challenges: rapid systematic review. JMIR Mhealth Uhealth 2021;9:e20738.

12. Webster CS, Scheeren TWL, Wan YI. Patient monitoring, wearable devices, and the healthcare information ecosystem. Br J Anaesth 2022;128:756-8.

13. Meng L, Ge K, Song Y, Yang D, Lin Z. Long-term wearable electrocardiogram signal monitoring and analysis based on convolutional neural network. IEEE Trans Instrum Meas 2021;70:1-11.

14. Randazzo V, Ferretti J, Pasero E. Anytime ECG monitoring through the use of a low-cost, user-friendly, wearable device. Sensors 2021;21:6036.

15. Chen C, Jiang J, He W, Lei W, Hao Q, Zhang X. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv Funct Mater 2020;30:1909469.

16. Shu L, Yu Y, Chen W, et al. Wearable emotion recognition using heart rate data from a smart bracelet. Sensors 2020;20:718.

17. Zhang S, Xia Q, Ma S, et al. Current advances and challenges in nanosheet-based wearable power supply devices. iScience 2021;24:103477.

18. Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst Nanoeng 2021;7:25.

19. Reid RC, Mahbub I. Wearable self-powered biosensors. Curr Opin Electrochem 2020;19:55-62.

20. Lou Z, Li L, Wang L, Shen G. Recent progress of self-powered sensing systems for wearable electronics. Small 2017;13:1701791.

21. Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021;194:113609.

22. Parvin D, Hassan O, Oh T, Islam SK. RF energy harvester integrated self-powered wearable respiratory monitoring system. In. IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2021.

23. Zhao Z, Lu Y, Mi Y, Meng J, Cao X, Wang N. Structural flexibility in triboelectric nanogenerators: a review on the adaptive design for self-powered systems. Micromachines 2022;13:1586.

24. Zheng Y, Omar R, Hu Z, Duong T, Wang J, Haick H. Bioinspired triboelectric nanosensors for self-powered wearable applications. ACS Biomater Sci Eng 2023;9:2087-102.

25. Rubab N, Kim SW. Triboelectric nanogenerators for self-powered sensors. J Sens Sci 2022;31:79-84.

26. Wang Y, Guo X, Shi Y, Mei D. Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. J Micromech Microeng 2019;29:045002.

27. Guo R, Zhang H, Cao S, Cui X, Yan Z, Sang S. A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring. Materials & Design 2019;182:108025.

28. Wang R, Mu L, Bao Y, et al. Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv Mater 2020;32:e2002878.

29. Zhang D, Wang D, Xu Z, et al. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev 2021;427:213597.

30. Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Integrated self-powered sensors based on 2D material devices. Adv Funct Materials 2022;32:2206900.

31. Lu Y, Lou Z, Jiang K, Chen D, Shen G. Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. Mater Today Nano 2019;8:100050.

32. Yang Z, Zhu Z, Chen Z, et al. Recent advances in self-powered piezoelectric and triboelectric sensors: from material and structure design to frontier applications of artificial intelligence. Sensors 2021;21:8422.

33. Wen N, Guan X, Fan Z, et al. A highly stretchable and breathable self-powered dual-parameter sensor for decoupled temperature and strain sensing. Org Electron 2023;113:106723.

34. Guan H, Zhong T, He H, et al. A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy 2019;59:754-61.

35. Yang L, Ma Z, Tian Y, Meng B, Peng Z. Progress on self-powered wearable and implantable systems driven by nanogenerators. Micromachines 2021;12:666.

36. Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nanomicro Lett 2021;13:57.

37. Chen J, Zhang L, Tu Y, et al. Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano Energy 2021;88:106272.

38. Yi J, Dong K, Shen S, et al. Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nanomicro Lett 2021;13:103.

39. Gai Y, Wang E, Liu M, et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 2022;6:e2200653.

40. Matiko JW, Wei Y, Torah R, et al. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Mater Struct 2015;24:125028.

41. Wang S, Jiang Y, Tai H, et al. An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019;63:103829.

42. Kim CS, Yang HM, Lee J, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett 2018;3:501-7.

43. Du M, Cao Y, Qu X, et al. Hybrid nanogenerator for biomechanical energy harvesting, motion state detection, and pulse sensing. Adv Mater Technol 2022;7:2101332.

44. Meng X, Cheng Q, Jiang X, et al. Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring. Nano Energy 2018;51:721-7.

45. Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron 2022;215:114565.

46. Tan P, Xi Y, Chao S, et al. An artificial intelligence-enhanced blood pressure monitor wristband based on piezoelectric nanogenerator. Biosensors 2022;12:234.

47. Hu B, Xue J, Jiang D, et al. Wearable exoskeleton system for energy harvesting and angle sensing based on a piezoelectric cantilever generator array. ACS Appl Mater Interfaces 2022;14:36622-32.

48. Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. Beilstein J Nanotechnol 2021;12:680-93.

49. Wu Z, Cheng T, Wang ZL. Self-powered sensors and systems based on nanogenerators. Sensors 2020;20:2925.

50. Huang P, Wen DL, Qiu Y, et al. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines 2021;12:158.

51. Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 2019;4:1800628.

52. Qin XM, Zhang GQ. Application of the internet of things. In: 4th International Conference on Machine Vision (ICMV) - Computer Vision and Image Analysis - Pattern Recognition and Basic Technologies. Singapore, SINGAPORE; 2011.

53. Choi W, Kim J, Lee S, Park E. Smart home and internet of things: a bibliometric study. J Clean Prod 2021;301:126908.

54. Yang Y, Guo X, Zhu M, et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv Energy Mater 2023;13:2203040.

55. Wen N, Fan Z, Yang S, et al. Highly stretchable, breathable, and self-powered strain-temperature dual-functional sensors with laminated structure for health monitoring, hyperthermia, and physiotherapy applications. Adv Elect Materials 2022;8:2200680.

56. Lu Z, Zhu Y, Jia C, et al. A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 2021;11:108.

57. Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonic - moving toward the era of artificial intelligence and internet of things. InfoMat 2020;2:1131-62.

58. Hayashi H, Tsuji T. Human-machine interfaces based on bioelectric signals: a narrative review with a novel system proposal. IEEJ Transactions Elec Engng 2022;17:1536-44.

59. Izadgoshasb I. Piezoelectric energy harvesting towards self-powered internet of things (IoT) sensors in smart cities. Sensors 2021;21:8332.

60. Su Y, Chen G, Chen C, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater 2021;33:e2170277.

61. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.

62. Rahimi Sardo F, Rayegani A, Matin Nazar A, et al. Recent progress of triboelectric nanogenerators for biomedical sensors: from design to application. Biosensors 2022;12:697.

63. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J 2008;22:338-42.

64. Mongeon P, Paul-hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 2016;106:213-28.

65. Zhu J, Liu W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 2020;123:321-35.

66. Singh VK, Singh P, Karmakar M, Leta J, Mayr P. The journal coverage of Web of Science, Scopus and Dimensions: a comparative analysis. Scientometrics 2021;126:5113-42.

67. Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics 2021;126:871-906.

68. Wang Q, Waltman L. Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. J Informetr 2016;10:347-64.

69. AlRyalat SAS, Malkawi LW, Momani SM. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J Vis Exp 2019.

70. Franceschini F, Maisano D, Mastrogiacomo L. Empirical analysis and classification of database errors in Scopus and Web of Science. J Informetr 2016;10:933-53.

71. Xie L, Chen Z, Wang H, Zheng C, Jiang J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurg 2020;137:435-442.e4.

72. Antwi-afari MF, Li H, Wong JK, et al. Sensing and warning-based technology applications to improve occupational health and safety in the construction industry: a literature review. Eng Constr Archit Manag 2019;26:1534-52.

73. Asadzadeh A, Arashpour M, Li H, Ngo T, Bab-hadiashar A, Rashidi A. Sensor-based safety management. Automat Constr 2020;113:103128.

74. Zhang W, Zhang Y, Yang G, et al. Wearable and self-powered sensors made by triboelectric nanogenerators assembled from antibacterial bromobutyl rubber. Nano Energy 2021;82:105769.

75. Kamilya T, Park J. Highly sensitive self-powered biomedical applications using triboelectric nanogenerator. Micromachines 2022;13:2065.

76. Yi Q, Pei X, Das P, Qin H, Lee SW, Esfandyarpour R. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022;101:107511.

77. Liang H, He Y, Chen M, et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv Intell Syst 2021;3:2100035.

78. Parrilla M, De Wael K. Wearable self-powered electrochemical devices for continuous health management. Adv Funct Mater 2021;31:2107042.

79. Shi Y, Zhang K, Ding S, et al. A self-powered piezoelectret sensor based on foamed plastic garbage for monitoring human motions. Nano Res 2023;16:1269-76.

80. Kong H, Si P, Li M, et al. Enhanced electricity generation from graphene microfluidic channels for self-powered flexible sensors. Nano Lett 2022;22:3266-74.

81. Bae CW, Chinnamani MV, Lee EH, Lee N. Stretchable non-enzymatic fuel cell-based sensor patch integrated with thread-embedded microfluidics for self-powered wearable glucose monitoring. Adv Materials Inter 2022;9:2200492.

82. Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl Mater Interfaces 2021;13:24774-84.

83. Zhang W, Liu Q, Chao S, et al. Ultrathin stretchable triboelectric nanogenerators improved by postcharging electrode material. ACS Appl Mater Interfaces 2021;13:42966-76.

84. Lin Y, Long Z, Liang S, Zhong T, Xing L. A wearable exhaling-oxygen-sensing mask based on piezoelectric/gas-sensing coupling effect for real-time monitoring and uploading lung disease information. J Phys D: Appl Phys 2022;55:224001.

85. Tan P, Zhao C, Fan Y, Li Z. Research progress of self-powered flexible biomedical sensors. Acta Phys Sin 2020;69:178704.

86. Lv F, Ma H, Shen L, et al. Wearable helical molybdenum nitride supercapacitors for self-powered healthcare smartsensors. ACS Appl Mater Interfaces 2021;13:29780-7.

87. Zheng C, Xiang L, Jin W, et al. A flexible self-powered sensing element with integrated organic thermoelectric generator. Adv Mater Technol 2019;4:1900247.

88. Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.

89. Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019;65:104033.

90. Yuan J, Zhu R, Li G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv Mater Technol 2020;5:2000419.

91. Xiao Y, Shen D, Zou G, et al. Self-powered, flexible and remote-controlled breath monitor based on TiO2 nanowire networks. Nanotechnology 2019;30:325503.

92. Hou X, Zhang S, Yu J, et al. Flexible piezoelectric nanofibers/polydimethylsiloxane-based pressure sensor for self-powered human motion monitoring. Energy Technol 2020;8:1901242.

93. Sun T, Shen L, Jiang Y, et al. Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl Mater Interfaces 2020;12:21779-87.

94. Ma H, Liu Q, Cheng P, et al. Wearable motion smartsensors self-powered by core-shell Au@Pt methanol fuel cells. ACS Sens 2021;6:4526-34.

95. Wang D, Zhang D, Tang M, et al. Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem Eng J 2022;446:136914.

96. Wang D, Zhang D, Yang Y, Mi Q, Zhang J, Yu L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021;15:2911-9.

97. Zheng S, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv Mater 2021;33:e2005449.

98. Bhanu N, Harikumar ME, Batabyal SK. Self-powered low-range pressure sensor using biopolymer composites. Appl Phys A 2022:128.

99. Gong H, Xu Z, Yang Y, et al. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens Bioelectron 2020;169:112567.

100. Bi S, Han X, Chen Q, et al. Ultralarge curvature and extreme rapid degradable porous wood based flexible triboelectric sensor for physical motion monitoring. Adv Mater Technol 2023;8:2201066.

101. Lan X, Li W, Ye C, et al. Scalable and degradable dextrin-based elastomers for wearable touch sensing. ACS Appl Mater Interfaces 2023;15:4398-407.

102. Morsada Z, Hossain MM, Islam MT, Mobin MA, Saha S. Recent progress in biodegradable and bioresorbable materials: from passive implants to active electronics. Appl Mater Today 2021;25:101257.

103. Chen K, Li Y, Du Z, et al. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 2022;102:107740.

104. Zhu J, Wen H, Zhang H, Huang P, Liu L, Hu H. Recent advances in biodegradable electronics- from fundament to the next-generation multi-functional, medical and environmental device. Sustain Mater Technol 2023;35:e00530.

105. Wu M, Wang Y, Gao S, et al. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 2019;56:693-9.

106. Wang Y, Wang R, Wan S, et al. Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures 2019;3:011001.

107. Lee E, Yoo H. Self-powered sensors: new opportunities and challenges from two-dimensional nanomaterials. Molecules 2021;26:5056.

108. Jeerapan I, Sempionatto JR, Pavinatto A, You JM, Wang J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A Mater 2016;4:18342-53.

109. Hallfors NG, Alhawari M, Abi Jaoude M, et al. Graphene oxide: nylon ECG sensors for wearable IoT healthcare - nanomaterial and SoC interface. Analog Integr Circ Sig Process 2018;96:253-60.

110. Roy PK, Marvan P, Mazánek V, et al. Self-powered broadband photodetector and sensor based on novel few-layered Pd3(PS4)2 nanosheets. ACS Appl Mater Interfaces 2021;13:30806-17.

111. Singh A, Singh S, Yadav B. Gigantic enhancement in response of heterostructured CeO2/CdS nanospheres based self-powered CO2 gas sensor: a comparative study. Sens Actuators B Chem 2023;377:133085.

112. Pan CT, Dutt K, Kumar A, et al. PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors. Int J Bioprint 2023;9:647.

113. Yoon Y, Truong PL, Lee D, Ko SH. Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanoscience Au 2021;2:64-92.

114. Wang S, He M, Weng B, et al. Stretchable and wearable triboelectric nanogenerator based on kinesio tape for self-powered human motion sensing. Nanomaterials 2018;8:657.

115. Wang J, Cui P, Zhang J, et al. A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy 2021;89:106320.

116. He X, Zi Y, Guo H, et al. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Funct Mater 2017;27:1604378.

117. Cao Y, Yang Y, Qu X, et al. A self-powered triboelectric hybrid coder for human-machine interaction. Small Methods 2022;6:e2101529.

118. Chen H, Song Y, Cheng X, Zhang H. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019;56:252-68.

119. Sahu M, Hajra S, Panda S, et al. Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 2022;97:107208.

120. Ning C, Dong K, Gao W, et al. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chem Eng J 2021;420:129650.

121. Zhu G, Ren P, Yang J, et al. Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy 2022;98:107327.

122. Li Z, Zhang M, Zhang Y, Lu T, Zhu W, Zhang Z. P(VDF-TrFE)-based self-sustained monitoring system. IEEE Trans Dielect Electr Insul 2022;29:1771-6.

123. Hossain G, Rahman M, Hossain IZ, Khan A. Wearable socks with single electrode triboelectric textile sensors for monitoring footsteps. Sens Actuator A Phys 2022;333:113316.

124. A S, Gao X, Lu C, et al. self-powered flexible sensor based on triboelectric nanogenerators for noncontact motion sensing. IEEE Sensors J 2022;22:12547-59.

125. Yao K, Liu Y, Li D, et al. Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy 2020;76:105017.

126. Zhu J, Luo G, Peng X, Wen W, Zhang X, Wang S. Visible light mediated self-powered sensing based on target induced recombination of photogenerated carriers. J Hazard Mater 2021;407:124765.

127. Wang L, Tang Y, Li Y, et al. Multifunctional integrated interdigital microsupercapacitors and self-powered iontronic tactile pressure sensor for wearable electronics. ACS Appl Mater Interfaces 2022;14:47136-47.

128. Ma J, Cui Z, Du Y, et al. Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv Fiber Mater 2022;4:1535-44.

129. Zhou B, Chen Y, Hu K, et al. Matrix-addressed crosstalk-free self-powered pressure sensor array based on electrospun isolated PVDF-TrFE cells. Sens Actuators A Phys 2022;347:113993.

130. Lei H, Xiao J, Chen Y, et al. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022;91:106670.

131. Yu J, Chen L, Hou X, et al. Stretchable and skin-conformal piezo-triboelectric pressure sensor for human joint bending motion monitoring. J Materiomics 2022;8:247-56.

132. Gong W, Hou C, Guo Y, et al. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy 2017;39:673-83.

133. He X, Hao Y, He M, Qin X, Wang L, Yu J. Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl Mater Interfaces 2021;13:60498-507.

134. Lee S, Park J. Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 2022;101:107546.

135. Li G, Li L, Zhang P, Chang C, Xu F, Pu X. Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing. RSC Adv 2021;11:17437-44.

136. Bai C, Wang Z, Yang S, et al. Wearable electronics based on the gel thermogalvanic electrolyte for self-powered human health monitoring. ACS Appl Mater Interfaces 2021;13:37316-22.

137. Huang J, Gu J, Liu J, et al. Environment stable ionic organohydrogel as a self-powered integrated system for wearable electronics. J Mater Chem A 2021;9:16345-58.

138. He X, Zhang X, Zhang H, et al. Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance. Compos Commun 2022;35:101275.

139. Zhang X, Ai J, Zou R, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring. ACS Appl Mater Interfaces 2021;13:15727-37.

140. Zeng X, Deng HT, Wen DL, Li YY, Xu L, Zhang XS. Wearable multi-functional sensing technology for healthcare smart detection. Micromachines 2022;13:254.

141. Shin YE, Park YJ, Ghosh SK, Lee Y, Park J, Ko H. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv Sci 2022;9:e2105423.

142. Jinno H, Yokota T, Koizumi M, et al. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nat Commun 2021;12:2234.

143. Kim Y, Lee J, Hong H, Park S, Ryu W. Self-powered wearable micropyramid piezoelectric film sensor for real-time monitoring of blood pressure. Adv Eng Mater 2023;25:2200873.

144. Wang B, Liu C, Xiao Y, et al. Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy 2017;32:42-9.

145. Xu L, Zhang Z, Gao F, et al. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021;81:105614.

146. Laurila M, Peltokangas M, Montero KL, et al. Self-powered, high sensitivity printed e-tattoo sensor for unobtrusive arterial pulse wave monitoring. Nano Energy 2022;102:107625.

147. Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 2021;14:3669-89.

148. Li L, Chen Z, Hao M, et al. Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett 2019;19:5544-52.

149. Su Y, Wang J, Wang B, et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020;14:6067-75.

150. Liu Q, Wang XX, Song WZ, et al. Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl Mater Interfaces 2020;12:8288-95.

151. Xue Z, Wu L, Yuan J, Xu G, Wu Y. Self-powered biosensors for monitoring human physiological changes. Biosensors 2023;13:236.

152. Wang J, Tang F, Wang Y, Lu Q, Liu S, Li L. Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor. ACS Appl Mater Interfaces 2020;12:1558-66.

153. Li M, Chen J, Zhong W, et al. Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric. ACS Sens 2020;5:2545-54.

154. Xu S, Fan Z, Yang S, et al. Highly flexible, stretchable, and self-powered strain-temperature dual sensor based on free-standing PEDOT:PSS/carbon nanocoils-poly(vinyl) alcohol films. ACS Sens 2021;6:1120-8.

155. Kanokpaka P, Chang L, Wang B, et al. Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat. Nano Energy 2022;100:107464.

156. Shajari S, Salahandish R, Zare A, et al. MicroSweat: a wearable microfluidic patch for noninvasive and reliable sweat collection enables human stress monitoring. Adv Sci 2023;10:e2204171.

157. Gonzalez-Solino C, Lorenzo MD. Enzymatic fuel cells: towards self-powered implantable and wearable diagnostics. Biosensors 2018;8:11.

158. Zhao J, Lin Y, Wu J, et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens 2019;4:1925-33.

159. Zhang X, Jing Y, Zhai Q, et al. Point-of-care diagnoses: flexible patterning technique for self-powered wearable sensors. Anal Chem 2018;90:11780-4.

160. Ghoreishizadeh SS, Moschou D, McBay D, et al. Towards self-powered and autonomous wearable glucose sensor. In: 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Bordeaux, France; 2018. p. 701-4.

161. Kil HJ, Kim SR, Park JW. A Self-charging supercapacitor for a patch-type glucose sensor. ACS Appl Mater Interfaces 2022;14:3838-48.

162. Huang X, Li J, Liu Y, et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-des Manuf 2022;5:201-9.

163. Santiago-Malagón S, Río-Colín D, Azizkhani H, Aller-Pellitero M, Guirado G, Del Campo FJ. A self-powered skin-patch electrochromic biosensor. Biosens Bioelectron 2021;175:112879.

164. Pu X, Zhang C, Wang ZL. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl Sci Rev 2023;10:nwac170.

165. Chen C, Chen L, Wu Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Materials Today 2020;32:84-93.

166. Liu C, Wang Y, Zhang N, et al. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy 2020;67:104228.

167. Jiang M, Lu Y, Zhu Z, Jia W. Advances in smart sensing and medical electronics by self-powered sensors based on triboelectric nanogenerators. Micromachines 2021;12:698.

168. Zheng N, Xue J, Jie Y, Cao X, Wang ZL. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res 2022;15:6213-9.

169. Chandrasekhar A, Alluri NR, Sudhakaran MSP, Mok YS, Kim SJ. A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications. Nanoscale 2017;9:9818-24.

170. Zu L, Liu D, Shao J, et al. A self-powered early warning glove with integrated elastic-arched triboelectric nanogenerator and flexible printed circuit for real-time safety protection. Adv Mater Technol 2022;7:2100787.

171. Cao W, Ouyang H, Xin W, et al. A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv Funct Mater 2020;30:2004181.

172. Lee T, Kim I, Kim D. Flexible hybrid nanogenerator for self-powered weather and healthcare monitoring sensor. Adv Electron Mater 2021;7:2100785.

173. Li Z, Xu B, Han J, Huang J, Fu H. A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing. Adv Funct Materials 2022;32:2106731.

174. Li L, Chen Y, Hsiao Y, Lai Y. Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human–device interfaces. Nano Energy 2022;94:106944.

175. He H, Liu J, Wang Y, et al. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 2022;16:2953-67.

176. Zhao J, Wang Y, Song X, Zhou A, Ma Y, Wang X. Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors. Nanoscale 2021;13:18363-73.

177. Zhu Y, Xia Y, Wu M, Guo W, Jia C, Wang X. Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 2022;98:107309.

178. Zhang P, Deng L, Zhang H, He J, Fan X, Ma Y. Enhanced performance of triboelectric nanogenerator with micro-rhombic patterned PDMS for self-powered wearable sensing. Adv Materials Inter 2022;9:2201265.

179. Zhou L, Liu D, Ren L, et al. Reconfigurable fiber triboelectric nanogenerator for self-powered defect detection. ACS Nano 2022;16:7721-31.

180. Li W, Song Z, Kong H, et al. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022;104:107935.

181. Jiang D, Ouyang H, Shi B, et al. A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics. InfoMat 2020;2:1191-200.

182. Rahman MT, Rana SMS, Salauddin M, et al. Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy 2022;100:107454.

183. Rayegani A, Saberian M, Delshad Z, et al. Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators. Biosensors 2022;13:37.

184. Zhu M, Yi Z, Yang B, Lee C. Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021;36:101016.

185. Huang X, Qin Q, Wang X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano 2021;15:19783-92.

186. Chen X, Song Y, Su Z, et al. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 2017;38:43-50.

187. Guan X, Xu B, Gong J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020;70:104516.

188. Zhou X, Parida K, Halevi O, et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 2020;72:104676.

189. Zhang D, Zhang X, Li X, et al. Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. Eur Polym J 2022;166:110956.

190. Liu L, Guo X, Lee C. Promoting smart cities into the 5G era with multi-field internet of things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021;88:106304.

191. Athira BS, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications. ACS Appl Mater Interfaces 2022;14:44239-50.

192. Su C, Huang X, Zhang L, et al. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy 2023;107:108095.

193. Lo WC, Chen CC, Fuh YK. 3D stacked near-field electrospun nanoporous PVDF-TrFE nanofibers as self-powered smart sensing in gait big data analytics. Adv Mater Technol 2021;6:2000779.

194. Zeng S, Zhang M, Jiang L, et al. Wearable piezoelectric nanogenerators based on core-shell Ga-PZT@GaOx nanorod-enabled P(VDF-TrFE) composites. ACS Appl Mater Interfaces 2022;14:7990-8000.

195. Kumar M, Kumari P. P(VDF-TrFE)/ZnO nanocomposite synthesized by electrospinning: effect of ZnO nanofiller on physical, mechanical, thermal, rheological and piezoelectric properties. Polym Bull 2023;80:4859-78.

196. Deng L, Deng W, Yang T, et al. Flexible lead-free piezoelectric Ba0.94Sr0.06Sn0.09Ti0.91O3/PDMS composite for self-powered human motion monitoring. J Funct Biomater 2023;14:37.

197. Wang N, Daniels R, Connelly L, et al. All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks. Small 2021;17:e2103161.

198. Zhang D, Mi Q, Wang D, Li T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens Actuators B Chem 2021;339:129923.

199. Wu HS, Wei SM, Chen SW, et al. Metal-free perovskite piezoelectric nanogenerators for human-machine interfaces and self-powered electrical stimulation applications. Adv Sci 2022;9:e2105974.

200. Tan P, Zou Y, Fan Y, Li Z. Self-powered wearable electronics. Wearable Technologies 2020;1:e5.

201. Choi J, Kwon D, Kim B, et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy 2020;74:104749.

202. Tan P, Han X, Zou Y, et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv Mater 2022;34:e2200793.

203. Zhang W, Wang P, Sun K, Wang C, Diao D. Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning. Nano Energy 2019;56:277-85.

204. Zhang K, Li Z, Zhang J, et al. Biodegradable smart face masks for machine learning-assisted chronic respiratory disease diagnosis. ACS Sens 2022;7:3135-43.

205. Wang B, Dai L, Hunter LA, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr Polym 2021;268:118210.

206. Shi Y, Wei X, Wang K, et al. Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl Mater Interfaces 2021;13:50329-37.

207. Zhang M, Wang W, Xia G, Wang L, Wang K. Self-powered electronic skin for remote human-machine synchronization. ACS Appl Electron Mater 2023;5:498-508.

208. Lin Y, Duan S, Zhu D, Li Y, Wang B, Wu J. Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin. Adv Intell Syst 2023;5:2100120.

209. Zhao Y, Gao W, Dai K, et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv Mater 2021;33:e2102332.

210. Chun KY, Seo S, Han CS. Self-powered, stretchable, and wearable ion gel mechanoreceptor sensors. ACS Sens 2021;6:1940-8.

211. Chen Y, Lei H, Gao Z, et al. Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy 2022;98:107273.

212. Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy 2021;21:100786.

213. Guo Y, Chen Z, Yang W, et al. Multifunctional mechanical sensing electronic device based on triboelectric anisotropic crumpled nanofibrous mats. ACS Appl Mater Interfaces 2021;13:55481-8.

214. Liu Q, Jin L, Zhang P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors. ACS Appl Mater Interfaces 2021;13:10623-31.

215. Zhu J, Zeng Y, Luo Y, et al. Triboelectric patch based on maxwell displacement current for human energy harvesting and eye movement monitoring. ACS Nano 2022;16:11884-91.

216. Chen C, Zhang L, Ding W, et al. Woven fabric triboelectric nanogenerator for biomotion energy harvesting and as self-powered gait-recognizing socks. Energies 2020;13:4119.

217. Rana SMS, Rahman MT, Zahed MA, et al. Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy 2022;104:107931.

218. Zhou M, Xu F, Ma L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022;104:107885.

219. Du X, Tian M, Sun G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater Interfaces 2020;12:55876-83.

220. Liu L, Yang X, Zhao L, et al. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 2020;73:104797.

221. Zhang H, Yin F, Shang S, et al. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy 2022;102:107687.

222. Wang M, Zhang J, Tang Y, et al. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 2018;12:6156-62.

223. Qin Y, Mo J, Liu Y, et al. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv Funct Materials 2022;32:2201846.

224. Mondal R, Hasan MAM, Zhang R, Olin H, Yang Y. Nanogenerators-based self-powered sensors. Adv Mater Technol 2022;7:2200282.

225. Jiang Y, Zhang Y, Ning C, et al. Ultrathin eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learning. Small 2022;18:e2106960.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/