REFERENCES
2. Shi Q, Yang Y, Sun Z, Lee C. Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care. ACS Mater Au 2022;2:394-435.
3. Xiao X, Fang Y, Xiao X, Xu J, Chen J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 2021;15:18633-46.
4. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.
5. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot 2022;7:eabn0495.
6. Wang K, Yap LW, Gong S, Wang R, Wang SJ, Cheng W. Nanowire-based soft wearable human-machine interfaces for future virtual and augmented reality applications. Adv Funct Mater 2021;31:2008347.
7. Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano ;2023:1355-71.
8. Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun 2022;13:5224.
9. Alagumalai A, Shou W, Mahian O, et al. Self-powered sensing systems with learning capability. Joule 2022;6:1475-500.
10. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.
11. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.
12. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.
13. Wei X, Li H, Yue W, et al. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022;5:1481-501.
14. Duan S, Yang H, Hong J, et al. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 2022;102:107665.
15. Zhu M, Sun Z, Chen T, Lee C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat Commun 2021;12:2692.
16. Guo X, He T, Zhang Z, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 2021;15:19054-69.
17. Niu H, Li H, Li Y, et al. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent perception. Nano Energy 2023;107:108144.
18. Shi Z, Meng L, Shi X, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nanomicro Lett 2022;14:141.
19. Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater 2022;34:e2202622.
20. Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci Adv 2019;5:eaav9653.
21. Niu H, Zhang H, Yue W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: a review. Small 2021;17:e2100804.
22. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 2021;33:e2002640.
23. Liu S, Ma K, Yang B, Li H, Tao X. Textile electronics for VR/AR applications. Adv Funct Mater 2021;31:2007254.
24. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.
25. Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nanomicro Lett 2022;14:225.
26. He J, Lu C, Jiang H, et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021;597:57-63.
27. Wu R, Liu S, Lin Z, Zhu S, Ma L, Wang ZL. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv Energy Mater 2022;12:2201288.
28. Gaubert V, Vauche G, Weimmerskirch-Aubatin J, et al. Toward autonomous wearable triboelectric systems integrated on textiles. iScience 2022;25:105264.
29. Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci 2022;9:e2203808.
30. Xu F, Jin X, Lan C, et al. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles. Nano Energy 2023;109:108312.
31. Zhi C, Shi S, Zhang S, et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nanomicro Lett 2023;15:60.
32. Wang L, Tian M, Qi X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir 2021;37:3122-9.
33. Cui X, Wu H, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A 2022;10:15881-905.
34. Dong K, Peng X, Cheng R, et al. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater 2022;34:e2109355.
35. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:e1902549.
36. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142-56.
37. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259-91.
38. Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart textiles for healthcare and sustainability. ACS Nano 2022;16:13301-13.
39. Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023;19:100565.
40. Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater 2021;31:2104288.
41. Lai Y, Lu H, Wu H, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater 2021;11:2100411.
42. Wang T, Meng J, Zhou X, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun 2022;13:7432.
43. Zhang J, Wang Y, Zhou J, et al. Multi-functional STF-based yarn for human protection and wearable systems. Chem Eng J 2023;453:139869.
44. Yang Y, Sun N, Wen Z, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018;12:2027-34.
45. Zhou Z, Padgett S, Cai Z, et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 2020;155:112064.
46. Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 2021;84:105954.
47. Qu Y, Nguyen-Dang T, Page AG, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv Mater 2018;30:e1707251.
48. Tong Y, Feng Z, Kim J, Robertson JL, Jia X, Johnson BN. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 2020;75:104973.
49. Zhao H, Qi X, Ma Y, et al. Wearable sunlight-triggered bimorph textile actuators. Nano Lett 2021;21:8126-34.
50. Dong K, Wang YC, Deng J, et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017;11:9490-9.
51. Lin R, Kim HJ, Achavananthadith S, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun 2022;13:2190.
52. Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 2020;6:eaba9624.
53. Ouyang Z, Li S, Liu J, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022;104:107963.
54. Jiang F, Zhou X, Lv J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv Mater 2022;34:e2200042.
55. Liang X, Zhu M, Li H, et al. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater 2022;32:2200162.
56. Zhang Z, He T, Zhu M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex Electron 2020:4.
57. Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 2020;11:2868.
58. Zhang Q, Li L, Li H, et al. Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 2019;60:267-74.
59. Jing T, Xu B, Yang Y. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 2021;84:105867.
60. Yang E, Xu Z, Chur LK, et al. Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl Mater Interf 2017;9:24220-9.
61. Wu G, Yang Z, Zhang Z, et al. High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochim Acta 2021;395:139141.
62. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater 2020;32:e1904911.
63. Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021;84:105866.
64. Khan AQ, Yu K, Li J, et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater 2022;4:1572-83.
65. Gan L, Zeng Z, Lu H, et al. A large-scalable spraying-spinning process for multifunctional electronic yarns. SmartMat 2023:4.
66. Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interf 2021;13:11260-7.
67. Park Y, Park M, Lee J. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv Funct Mater 2018;28:1804123.
68. Chen C, Chen L, Wu Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater Today 2020;32:84-93.
69. Park J, Choi AY, Lee CJ, Kim D, Kim YT. Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices. RSC Adv 2017;7:54829-34.
70. Liu R, Li J, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interf 2020;12:46446-54.
71. Kim J, Kim W, Jang G, Hyeon DS, Park MH, Hong JP. 1D stretchable block copolymer yarn-based energy harvesters via BaTiO3/polydimethylsiloxane composite-carbon conductive ink. Adv Energy Mater 2020;10:1903217.
72. Jing T, Xu B, Xin JH, Guan X, Yang Y. Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J Mater Chem A 2021;9:12331-9.
73. Wang W, Yu A, Liu X, et al. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020;71:104605.
74. Li L, Wang K, Fan H, et al. Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. Mater Horiz 2021;8:1711-21.
75. Gao Y, Li Z, Xu B, et al. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 2022;91:106672.
76. Yang Y, Xu B, Gao Y, Li M. Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles. ACS Appl Mater Interf 2021;13:49927-35.
77. He Q, Wu Y, Feng Z, et al. An all-textile triboelectric sensor for wearable teleoperated human-machine interaction. J Mater Chem A 2019;7:26804-11.
78. Tang J, Wu Y, Ma S, Yan T, Pan Z. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos B Eng 2022;232:109605.
79. Zhou M, Xu F, Ma L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022;104:107885.
80. Pinto TV, Fernandes DM, Guedes A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chem Eng J 2018;350:856-66.
81. Choi W, Kwon Y, Yu W, Kim DW. Graphite fiber electrode by continuous wet-spinning. ACS Appl Energy Mater 2022;5:8963-72.
82. Zhang D, Yang W, Gong W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv Mater 2021;33:e2100782.
83. Ma L, Zhou M, Wu R, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020;14:4716-26.
84. Probst H, Katzer K, Nocke A, Hickmann R, Zimmermann M, Cherif C. Melt spinning of highly stretchable, electrically conductive filament yarns. Polymers 2021;13:590.
85. Wang Q, Ma W, Yin E, et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors. ACS Appl Energy Mater 2020;3:9360-8.
86. Cho SY, Yu H, Choi J, et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 2019;13:9332-41.
87. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:3537.
88. Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 2021;12:3317.
89. Wang Z, Wu T, Wang Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun 2020;11:3842.
90. Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168-94.
91. Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally drawn highly conductive fibers with controlled elasticity. Adv Mater 2022;34:e2201081.
92. Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-42.
93. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv 2021:7.
94. Wu Y, Dai X, Sun Z, et al. Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles. Nano Energy 2022;98:107240.
95. Ding X, Yu Y, Shang L, Zhao Y. Histidine-triggered go hybrid hydrogels for microfluidic 3D printing. ACS Nano 2022;16:19533-42.
96. Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:eaay2840.
97. Ye C, Dong S, Ren J, Ling S. Ultrastable and high-performance silk energy harvesting textiles. Nanomicro Lett 2019;12:12.
98. Zhang X, Yang W, Shao Z, et al. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022;16:2188-97.
99. Wei Y, Zhang W, Hou C, Zhang Q, Li Y, Wang H. Independent dual-responsive Janus chromic fibers. Sci China Mater 2021;64:1770-9.
100. Zhong W, Ming X, Jiang H, et al. Full-textile human motion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns. ACS Appl Mater Interf ;2021:52901-11.
101. Gong W, Guo Y, Yang W, et al. Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 2022;16:12635-44.
102. Zeng S, Pian S, Su M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021;373:692-6.
103. Choi HW, Shin DW, Yang J, et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun 2022;13:814.
104. Peng Y, Sun F, Xiao C, et al. Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl Mater Interf 2021;13:54386-95.
105. Yang Q, Liu N, Yin J, Tian H, Yang Y, Ren TL. Understanding the origin of tensile response in a graphene textile strain sensor with negative differential resistance. ACS Nano 2022;16:14230-8.
106. Uzun S, Seyedin S, Stoltzfus AL, et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater 2019;29:1905015.
107. Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J. Large-scale smart carpet for self-powered fall detection. Adv Mater Technol 2020;5:1900978.
108. Peng X, Dong K, Ning C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Mater 2021;31:2103559.
109. Yang W, Gong W, Hou C, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat Commun 2019;10:5541.
110. Zhang JH, Li Z, Xu J, et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat Commun 2022;13:5839.
111. Gong W, Wang X, Yang W, et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles. Adv Mater 2021;33:e2007352.
112. Guo Y, Li H, Li Y, et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv Funct Mater 2022;32:2203585.
113. Zhang Y, Yang J, Hou X, et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 2022;13:1317.
114. Niu H, Gao S, Yue W, Li Y, Zhou W, Liu H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020;16:e1904774.
115. Duan S, Lin Y, Wang Z, et al. Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research 2021;2021:9861467.
116. Shi X, Fan X, Zhu Y, et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun 2022;13:1119.
117. Gou GY, Li XS, Jian JM, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci Adv 2022;8:eabn2156.
118. Jung YH, Hong SK, Wang HS, et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2020;32:e1904020.
119. Park J, Kang DH, Chae H, et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci Adv 2022;8:eabj9220.
120. Kim DW, Kim H, Hwang G, et al. Conformably skin-adherent piezoelectric patch with bioinspired hierarchically arrayed microsuckers enables physical energy amplification. ACS Energy Lett 2022;7:1820-7.
121. Luo J, Gao W, Wang ZL. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater 2021;33:e2004178.
122. Qu X, Liu Z, Tan P, et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv 2022;8:eabq2521.
123. Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat Electron 2022;5:694-705.
124. Wang M, Yang Y, Min J, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed Eng 2022;6:1225-35.
125. Sempionatto JR, Lasalde-ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 2022;6:899-915.
126. Zhang T, Ding Y, Hu C, et al. Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human-machine interaction. Adv Mater 2022:e2203786.
127. Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv Funct Mater 2020;30:2001553.
128. Chen K, Li Y, Du Z, et al. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 2022;102:107740.
129. Chen L, Chen C, Jin L, et al. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ Sci 2021;14:955-64.
130. Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PRF, Asadi K. Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing. Adv Funct Mater 2021;31:2004326.
131. Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 2010;22:5178-82.
132. Yin F, Yang J, Peng H, Yuan W. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. J Mater Chem C 2018;6:6840-6.
133. Song Y, Huang W, Mu C, et al. Carbon nanotube-modified fabric for wearable smart electronic-skin with exclusive normal-tangential force sensing ability. Adv Mater Technol 2019;4:1800680.
134. Yu Q, Su C, Bi S, et al. Ti3C2Tx@nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl Mater Interf 2022;14:9632-43.
135. Atalay O, Kennon WR, Husain MD. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 2013;13:11114-27.
136. Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X. Flexible and wearable strain sensing fabrics. Chem Eng J 2017;325:396-403.
137. Husain MD, Kennon R, Dias T. Design and fabrication of temperature sensing fabric. J Ind Text 2014;44:398-417.
138. Xing H, Li X, Lu Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens Actuators B Chem 2022;361:131704.
139. Rauf S, Vijjapu MT, Andrés MA, et al. Highly selective metal-organic framework textile humidity sensor. ACS Appl Mater Interf 2020;12:29999-30006.
140. Ma L, Wu R, Patil A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 2019;29:1904549.
141. Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics. Adv Mater Technol 2019;4:1800338.
142. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater 2016;28:722-8.
143. Kim T, Park C, Samuel EP, et al. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interf 2021;13:10013-25.
144. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.
145. Cheng B, Wu P. Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021;15:8676-85.
146. Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:e1901558.
147. Yang S, Li C, Wen N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli. J Mater Chem C 2021;9:13789-98.
148. Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31:2010962.
149. Chen J, Zhang J, Hu J, et al. Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv Mater 2022;34:e2104313.
150. Kim SJ, Kim H, Ahn J, et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv Mater 2019;31:e1900564.
151. Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS. Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed. Sensors 2015;15:11295-311.
152. Bashir T, Ali M, Persson N, Ramamoorthy SK, Skrifvars M. Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Text Res J 2014;84:323-34.
153. Jin H, Matsuhisa N, Lee S, Abbas M, Yokota T, Someya T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv Mater 2017;29:1605848.
154. Kim R, Cho G. Effectiveness of the smart healthcare glove system for elderly persons with hypertension: healthcare system for the elderly. Hum Factors Man 2013;23:198-212.
155. Meng K, Zhao S, Zhou Y, et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020;2:896-907.
156. Chen G, Zhao X, Andalib S, et al. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021;4:3725-40.
157. Gi SO, Lee YJ, Koo HR, et al. Application of a textile-based inductive sensor for the vital sign monitoring. J Electr Eng Technol 2015;10:364-71.
158. Wicaksono I, Tucker CI, Sun T, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. NPJ Flex Electron 2020:4.
159. Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017;29:1703700.
160. Jeong H, Rogers JA, Xu S. Continuous on-body sensing for the COVID-19 pandemic: gaps and opportunities. Sci Adv 2020:6.
161. Dong J, Wang D, Peng Y, et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022;97:107160.
162. Parrilla M, Cánovas R, Jeerapan I, Andrade FJ, Wang J. A textile-based stretchable multi-ion potentiometric sensor. Adv Healthc Mater 2016;5:996-1001.
163. Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.
164. Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159-71.
165. Zhao Z, Li Q, Chen L, et al. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 2021;21:916-32.
166. Zhao Z, Li Q, Dong Y, Gong J, Li Z, Zhang J. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat. Sens Actuators B Chem 2022;353:131154.
167. Coppedè N, Tarabella G, Villani M, Calestani D, Iannotta S, Zappettini A. Human stress monitoring through an organic cotton-fiber biosensor. J Mater Chem B 2014;2:5620-6.
168. Gao Z, Lou Z, Chen S, et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res 2018;11:511-9.
169. Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci Rep 2016;6:33637.
170. Wu R, Ma L, Patil A, et al. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J Mater Chem A 2020;8:12665-73.
171. Zhang X, Tang S, Ma R, et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 2022;103:107778.
172. Jin H, Nayeem MOG, Lee S, et al. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 2019;13:7905-12.
173. Kapoor A, Mcknight M, Chatterjee K, et al. Toward fully manufacturable, fiber assembly-based concurrent multimodal and multifunctional sensors for e-textiles. Adv Mater Technol 2019;4:1800281.
174. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.
175. Kim D, Kim D, Lee H, et al. Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv Mater 2016;28:748-56.
176. Tang X, Wu C, Zhang T, et al. A low-cost polyaniline@textile-based multifunctional sensor for simultaneously detecting tactile and olfactory stimuli. Macromol Mater Eng 2018;303:1800340.
177. Zhou Y, Zhao X, Xu J, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20:1670-6.
178. Fang Y, Zou Y, Xu J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 2021;33:e2104178.
179. Homayounfar SZ, Rostaminia S, Kiaghadi A, et al. Multimodal smart eyewear for longitudinal eye movement tracking. Matter 2020;3:1275-93.
180. Zhao X, Zhou Y, Xu J, et al. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun 2021;12:6755.
181. Wei Y, Li X, Wang Y, et al. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021;15:17738-47.
182. Li Y, Miao X, Chen JY, Jiang G, Liu Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater Des 2021;197:109273.
183. Luo Y, Li Y, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron 2021;4:193-201.
184. Yue X, Jia Y, Wang X, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos Sci Technol 2020;189:108038.
185. Sharma S, Chhetry A, Maharjan P, et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022;95:106970.
186. Hu X, Tian M, Xu T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020;14:559-67.
187. Lan B, Wu F, Cheng Y, et al. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. Nano Energy 2022;102:107737.
188. Li S, Cao P, Li F, et al. Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy 2022;92:106754.
189. Ding T, Chan KH, Zhou Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun 2020;11:6006.
190. Duan S, Lin Y, Zhang C, et al. Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy 2022;91:106650.
191. Duan S, Wang J, Lin Y, et al. Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Res 2022; doi: 10.1007/s12274-022-5077-9.
192. Dong B, Yang Y, Shi Q, et al. Wearable triboelectric-human-machine interface (THMI) using robust nanophotonic readout. ACS Nano 2020;14:8915-30.
193. Liu Z, Li Z, Yi Y, et al. Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy 2022;99:107444.
194. Veeramuthu L, Cho C, Venkatesan M, et al. Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators. Nano Energy 2022;101:107592.
195. Wu R, Seo S, Ma L, Bae J, Kim T. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nanomicro Lett 2022;14:139.
196. Yang W, Gong W, Gu W, et al. Self-powered interactive fiber electronics with visual-digital synergies. Adv Mater 2021;33:e2104681.
197. Zhang L, He J, Liao Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A 2019;7:26631-40.
198. Bai Z, He T, Zhang Z, et al. Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy 2022;94:106956.
199. Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C. Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 2023:5.
200. Zhu M, Sun Z, Zhang Z, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv 2020;6:eaaz8693.
201. Sun Z, Zhu M, Zhang Z, et al. Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv Sci 2021;8:e2100230.
202. Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C. Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 2021;15:18312-26.
203. Ma S, Wang X, Li P, et al. Optical micro/nano fibers enabled smart textiles for human-machine interface. Adv Fiber Mater 2022;4:1108-17.
204. Wen F, Zhang Z, He T, Lee C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun 2021;12:5378.
205. Wen F, Sun Z, He T, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;7:2000261.
206. Choi S, Yoon K, Lee S, et al. Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applications. Adv Funct Mater 2019;29:1905808.
207. Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.
208. Zhang Z, Shi Q, He T, et al. Artificial intelligence of toilet (AI-Toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 2021;90:106517.
209. Shi Q, Zhang Z, He T, et al. Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 2020;11:4609.
210. Zhao Y, Li X, Hou N, et al. Self-powered sensor integration system based on thorn-like polyaniline composites for smart home applications. Nano Energy 2022;104:107966.
211. Xu F, Dong S, Liu G, et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021;88:106247.
212. He E, Sun Y, Wang X, et al. 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos B Eng 2020;200:108244.
213. Ma L, Wu R, Liu S, et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater 2020;32:e2003897.
214. Niu L, Peng X, Chen L, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 2022;97:107168.
215. Zhang H, Yin F, Shang S, et al. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy 2022;102:107687.
216. Chen M, Ouyang J, Jian A, et al. Imperceptible, designable, and scalable braided electronic cord. Nat Commun 2022;13:7097.
217. Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv Sci 2020;7:2000258.
218. Niu H, Yin F, Kim E, et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat ;2023:e12412.
219. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater 2022;34:e2101339.
220. Yuan Z, Han S, Gao W, Pan C. Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS Appl Electron Mater 2022;4:1-26.
221. Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 2022;32:2110417.
222. Yao S, Ren P, Song R, et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32:e1902343.
223. Wang T, Shen Y, Chen L, et al. Large-scale production of the 3D warp knitted terry fabric triboelectric nanogenerators for motion monitoring and energy harvesting. Nano Energy 2023;109:108309.
224. Duan S, Wang B, Lin Y, et al. Waterproof mechanically robust multifunctional conformal sensors for underwater interactive human-machine interfaces. Adv Intell Syst 2021;3:2100056.
225. Yang Y, Wei X, Zhang N, et al. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876.
226. de Medeiros M, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy 2021;87:106155.
227. Praveen S, Sim GS, Ho CW, Lee CW. 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Stor Mater 2021;41:748-57.
228. Li D, Yang S, Chen X, Lai W, Huang W. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance. Adv Funct Mater 2021;31:2107484.
229. Rafique A, Ferreira I, Abbas G, Baptista AC. Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nanomicro Lett 2023;15:40.
230. Duan S, Shi Q, Wu J. Multimodal sensors and ML-based data fusion for advanced robots. Adv Intell Syst 2022;4:2200213.