REFERENCES

1. Aheleroff S, Xu X, Lu Y, et al. IoT-enabled smart appliances under industry 4.0: a case study. Adv Eng Inform 2020;43:101043.

2. Wang XX, Cao WQ, Cao MS, Yuan J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv Mater 2020;32:e2002112.

3. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 2021;18:581-99.

4. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.

5. Ahn S, Han TH, Maleski K, et al. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv Mater 2020;32:e2000919.

6. Mackanic DG, Chang TH, Huang Z, Cui Y, Bao Z. Stretchable electrochemical energy storage devices. Chem Soc Rev 2020;49:4466-95.

7. Lim K, Han T, Lee T. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ Sci 2021;14:2009-35.

8. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:e2003155.

9. Wu J, Pang H, Ding L, et al. A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling strategy. Chem Eng J 2021;421:129830.

10. Kadumudi FB, Hasany M, Pierchala MK, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv Mater 2021;33:e2100047.

11. Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv Mater 2020;32:e1902254.

12. Chen Y, Carmichael RS, Carmichael TB. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl Mater Interf 2019;11:31210-9.

13. Li M, Yang YG, Wang ZK, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv Mater 2019;31:e1901519.

14. Chen X, Xu G, Zeng G, et al. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv Mater 2020;32:e1908478.

15. Kou Y, Sun K, Luo J, et al. An intrinsically flexible phase change film for wearable thermal managements. Energy Stor Mater 2021;34:508-14.

16. Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small 2022;18:e2103734.

17. Hu Y, Zheng Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 2019;56:16-24.

18. Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019;65:104033.

19. Lessing J, Glavan AC, Walker SB, Keplinger C, Lewis JA, Whitesides GM. Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper-based electronics and MEMS. Adv Mater 2014;26:4677-82.

20. Yu KJ, Yan Z, Han M, Rogers JA. Inorganic semiconducting materials for flexible and stretchable electronics. NPJ Flex Electron 2017:1.

21. Chung HU, Kim BH, Lee JY, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019:363.

22. Rogers JA, Chen X, Feng X. Flexible hybrid electronics. Adv Mater 2020;32:e1905590.

23. Xie Z, Avila R, Huang Y, Rogers JA. Flexible and stretchable antennas for biointegrated electronics. Adv Mater 2020;32:e1902767.

24. Kamat AM, Pei Y, Jayawardhana B, Kottapalli AGP. Biomimetic soft polymer microstructures and piezoresistive graphene MEMS sensors using sacrificial metal 3D printing. ACS Appl Mater Interf 2021;13:1094-104.

25. Xu R, Lin YS. Flexible and controllable metadevice using self-assembly MEMS actuator. Nano Lett 2021;21:3205-10.

26. Yang Q, Liu T, Xue Y, et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat Electron 2022;5:526-38.

27. Zheng X, Kamat AM, Krushynska AO, Cao M, Kottapalli AGP. 3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers. Adv Funct Mater 2022;32:2207274.

28. Kim RH, Kim DH, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 2010;9:929-37.

29. Kim RH, Kim S, Song YM, et al. Flexible vertical light emitting diodes. Small 2012;8:3123-8.

30. McCall JG, Kim TI, Shin G, et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 2013;8:2413-28.

31. Park G, Chung HJ, Kim K, et al. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv Healthc Mater 2014;3:515-25.

32. Kim TH, Lee CS, Kim S, et al. Fully Stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017;11:5992-6003.

33. Seo HK, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv Mater 2017;29:1605587.

34. Shin G, Gomez AM, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017;93:509-521.e3.

35. Jung HH, Song J, Nie S, et al. Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices. Adv Mater Technol 2018;3:1800159.

36. Song E, Chiang CH, Li R, et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc Natl Acad Sci U S A 2019;116:15398-406.

37. Lee H, Jiang Z, Yokota T, Fukuda K, Park S, Someya T. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater Sci Eng R Rep 2021;146:100631.

38. Zhou H, Han SJ, Lee HD, et al. Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices. Adv Mater 2022;34:e2206377.

39. Fukuda K, Sekitani T, Zschieschang U, et al. A 4 V operation, flexible braille display using organic transistors, carbon nanotube actuators, and organic static random-access memory. Adv Funct Mater 2011;21:4019-27.

40. Kim DH, Wang S, Keum H, et al. Thin, flexible sensors and actuators as “instrumented” surgical sutures for targeted wound monitoring and therapy. Small 2012;8:3263-8.

41. Rogers JA. Materials science. A clear advance in soft actuators. Science 2013;341:968-9.

42. Webb RC, Pielak RM, Bastien P, et al. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators. PLoS One 2015;10:e0118131.

43. Yu C, Yuan P, Erickson EM, Daly CM, Rogers JA, Nuzzo RG. Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter 2015;11:7953-9.

44. Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016;536:451-5.

45. Ling Y, Pang W, Li X, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv Mater 2020;32:e1908475.

46. Pang W, Xu S, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces. Proc Natl Acad Sci U S A 2022;119:e2215028119.

47. Jeong JW, McCall JG, Shin G, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015;162:662-74.

48. Choi J, Bandodkar AJ, Reeder JT, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens 2019;4:379-88.

49. Reeder JT, Choi J, Xue Y, et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci Adv 2019;5:eaau6356.

50. Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci Adv 2020:6.

51. Luan H, Zhang Q, Liu TL, et al. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Sci Adv 2021;7:eabj3686.

52. Baker LB, Seib MS, Barnes KA, et al. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings. Adv. Mater Technol 2022;7:2200249.

53. Kim J, Wu Y, Luan H, et al. A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements of nutrients in sweat and supply of vitamins through the skin. Adv Sci 2022;9:e2103331.

54. Wu Y, Wu M, Vázquez-Guardado A, et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat Commun 2022;13:5571.

55. Bai K, Cheng X, Xue Z, et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Sci Adv 2020;6:eabb7417.

56. Chen S, Liu Z, Du H, et al. Electromechanically reconfigurable optical nano-kirigami. Nat Commun 2021;12:1299.

57. Fan X, Pan Z, Chen S, Li Y, Zhao Z, Pan T. 3D flexible frequency selective surface with stable electromagnetic transmission properties. Adv. Mater Technol 2022;7:2101316.

58. Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 2006;1:201-7.

59. Yu C, Duan Z, Yuan P, et al. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures (Adv. Mater. 11/2013). Adv Mater 2013;25:1540-1540.

60. McCracken JM, Xu S, Badea A, et al. Deterministic integration of biological and soft materials onto 3D microscale cellular frameworks. Adv Biosyst 2017;1:1700068.

61. Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2017:2.

62. Kim BH, Liu F, Yu Y, et al. Mechanically guided post-assembly of 3D electronic systems. Adv Funct Mater 2018;28:1803149.

63. Cheng X, Zhang Y. Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv Mater 2019;31:e1901895.

64. Li S, Han M, Rogers JA, Zhang Y, Huang Y, Wang H. Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. J Mech Phys Solids 2019;125:736-48.

65. Nan K, Wang H, Ning X, et al. Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer films. ACS Nano 2019;13:449-57.

66. Lim S, Luan H, Zhao S, et al. Assembly of foldable 3D microstructures using graphene hinges. Adv Mater 2020;32:e2001303.

67. Zhao H, Lee Y, Han M, et al. Nanofabrication approaches for functional three-dimensional architectures. Nano Today 2020;30:100825.

68. Park Y, Chung TS, Lee G, Rogers JA. Materials chemistry of neural interface technologies and recent advances in three-dimensional systems. Chem Rev 2022;122:5277-316.

69. Yoon HJ, Lee G, Kim JT, et al. Biodegradable, three-dimensional colorimetric fliers for environmental monitoring. Sci Adv 2022;8:eade3201.

70. Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 2013;9:8062-70.

71. Xu S, Yan Z, Jang KI, et al. Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015;347:154-9.

72. Huang S, Liu Y, Guo CF, Ren Z. A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au nanotrough network. Adv Electron Mater 2017;3:1600534.

73. Ning X, Wang H, Yu X, et al. Three-dimensional multiscale, multistable, and geometrically diverse microstructures with tunable vibrational dynamics assembled by compressive buckling. Adv Funct Mater 2017;27:1605914.

74. Li H, Wang X, Zhu F, et al. Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by compressive buckling. J Appl Mech 2018;85:121002.

75. Wang H, Ning X, Li H, et al. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. J Mech Phys Solids 2018;112:187-208.

76. Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. Printed origami structures. Adv Mater 2010;22:2251-4.

77. Shi Y, Zhang F, Nan K, et al. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech Lett 2017;11:105-10.

78. Li C, Xue Y, Han M, et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter 2021;4:1377-90.

79. Lamoureux A, Lee K, Shlian M, Forrest SR, Shtein M. Dynamic kirigami structures for integrated solar tracking. Nat Commun 2015;6:8092.

80. Neville RM, Scarpa F, Pirrera A. Shape morphing kirigami mechanical metamaterials. Sci Rep 2016;6:31067.

81. Humood M, Shi Y, Han M, et al. Fabrication and deformation of 3D multilayered kirigami microstructures. Small 2018;14:e1703852.

82. Zheng M, Chen Y, Liu Z, et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. Microsyst Nanoeng 2019;5:54.

83. Bashandeh K, Humood M, Lee J, et al. The effect of defects on the cyclic behavior of polymeric 3D kirigami structures. Extreme Mech Lett 2020;36:100650.

84. Guo X, Ni X, Li J, et al. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion. Adv Mater 2021;33:e2004919.

85. Dogan E, Bhusal A, Cecen B, Miri AK. 3D printing metamaterials towards tissue engineering. Appl Mater Today 2020;20:100752.

86. Xiong Z, Li M, Hao S, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material. ACS Appl Mater Interf 2021;13:39915-24.

87. Okutani C, Yokota T, Miyazako H, Someya T. 3D printed spring-type electronics with liquid metals for highly stretchable conductors and inductive strain/pressure sensors. Adv Mater Technol 2022;7:2101657.

88. Yoon J, Li L, Semichaevsky AV, et al. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. Nat Commun 2011;2:343.

89. Guo CF, Lan Y, Sun T, Ren Z. Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy 2014;8:110-7.

90. Dagdeviren C, Joe P, Tuzman OL, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech Lett 2016;9:269-81.

91. Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv Funct Mater 2017;27:1704353.

92. Nan K, Kang SD, Li K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci Adv 2018;4:eaau5849.

93. Liu R, Takakuwa M, Li A, et al. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv Energy Mater 2020;10:2000523.

94. Sheng H, Zhang X, Liang J, et al. Recent advances of energy solutions for implantable bioelectronics. Adv Healthc Mater 2021;10:e2100199.

95. Jiang F, Zhou X, Lv J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv Mater 2022;34:e2200042.

96. Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat Biomed Eng 2017;1:0038.

97. Bai W, Yang H, Ma Y, et al. Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Adv Mater 2018;30:e1801584.

98. Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018;2:687-95.

99. Yu X, Wang H, Ning X, et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng 2018;2:165-72.

100. Bandodkar AJ, Lee SP, Huang I, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat Electron 2020;3:554-62.

101. Kim S, Lee B, Reeder JT, et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 2020;117:27906-15.

102. Choi J, Chen S, Deng Y, et al. Skin-interfaced microfluidic systems that combine hard and soft materials for demanding applications in sweat capture and analysis. Adv Healthc Mater 2021;10:e2000722.

103. Liang Q, Hahn SK, Rogers JA. Advanced materials and devices for medical applications. APL Materials 2021;9:090401.

104. Ryu H, Seo MH, Rogers JA. Bioresorbable metals for biomedical applications: from mechanical components to electronic devices. Adv Healthc Mater 2021;10:e2002236.

105. Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater 2021;20:1559-70.

106. Nguyen TK, Yadav S, Truong TA, et al. Integrated, transparent silicon carbide electronics and sensors for radio frequency biomedical therapy. ACS Nano 2022;16:10890-903.

107. Tian L, Li Y, Webb RC, et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Adv Funct Mater 2017;27:1701282.

108. Guo X, Wang X, Ou D, et al. Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. NPJ Flex Electron 2018:2.

109. Kim SB, Lee K, Raj MS, et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 2018;14:e1802876.

110. Bandodkar AJ, Gutruf P, Choi J, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 2019;5:eaav3294.

111. Bai N, Wang L, Wang Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat Commun 2020;11:209.

112. Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv Sci 2020;7:2000258.

113. Ryu D, Kim DH, Price JT, et al. Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings. Proc Natl Acad Sci U S A 2021:118.

114. Zhao H, Kim Y, Wang H, et al. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. Proc Natl Acad Sci U S A 2021:118.

115. Bai N, Wang L, Xue Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS Nano 2022;16:4338-47.

116. Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 2022;32:2110417.

117. Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat Nanotechnol 2011;6:402-7.

118. Silverberg JL, Evans AA, McLeod L, et al. Applied origami. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 2014;345:647-50.

119. Eidini M, Paulino GH. Unraveling metamaterial properties in zigzag-base folded sheets. Sci Adv 2015;1:e1500224.

120. Zhang H, Wu J, Fang D, Zhang Y. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation. Sci Adv 2021:7.

121. Zhang KP, Liao YF, Qiu B, et al. 3D printed embedded metamaterials. Small 2021;17:e2103262.

122. Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater 2017;29:1703817.

123. Lin R, Li Y, Mao X, Zhou W, Liu R. Hybrid 3D printing all-in-one heterogenous rigidity assemblies for soft electronics. Adv Mater Technol 2019;4:1900614.

124. Goh GL, Zhang H, Chong TH, Yeong WY. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater 2021;7:2100445.

125. Aditya Khatokar J, Vinay N, Sudhir Bale A, et al. A study on improved methods in micro-electromechanical systems technology. Mater Today Proc 2021;43:3784-90.

126. Hassanin H, Sheikholeslami G, Sareh P, Ishaq RB. Microadditive manufacturing technologies of 3D microelectromechanical systems. Adv Eng Mater 2021;23:2100422.

127. Martyniuk M, Silva KKMBD, Putrino G, et al. Optical microelectromechanical systems technologies for spectrally adaptive sensing and imaging. Adv Funct Mater 2022;32:2103153.

128. Chircov C, Grumezescu AM. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines 2022;13:164.

129. Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv Optical Mater 2020;8:1900653.

130. Koene I, Viitala R, Kuosmanen P. Internet of things based monitoring of large rotor vibration with a microelectromechanical systems accelerometer. IEEE Access 2019;7:92210-9.

131. Gao L, Zhang Y, Zhang H, et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 2015;9:5968-75.

132. Liu Y, Yan Z, Lin Q, et al. Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and experimental validation. Adv Funct Mater 2016;26:2909-18.

133. Nan K, Luan H, Yan Z, et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv Funct Mater 2017;27:1604281.

134. Shi Y, Pei P, Cheng X, et al. An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures. Soft Matter 2018;14:8828-37.

135. Zhao H, Li K, Han M, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proc Natl Acad Sci U S A 2019;116:13239-48.

136. Zhang Y, Yan Z, Nan K, et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc Natl Acad Sci U S A 2015;112:11757-64.

137. Rafsanjani A, Bertoldi K. Buckling-induced kirigami. Phys Rev Lett 2017;118:084301.

138. Ning X, Wang X, Zhang Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv Mater Interf 2018;5:1800284.

139. Abdullah AM, Li X, Braun PV, Rogers JA, Hsia KJ. Kirigami-inspired self-assembly of 3D structures. Adv Funct Mater 2020;30:1909888.

140. Bashandeh K, Lee J, Wu Q, et al. Mechanics and deformation of shape memory polymer kirigami microstructures. Extreme Mech Lett 2020;39:100831.

141. Yan Z, Zhang F, Wang J, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv Funct Mater 2016;26:2629-39.

142. Chung HU, Rwei AY, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med 2020;26:418-29.

143. Fu H, Nan K, Bai W, et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater 2018;17:268-76.

144. Zhang L, Zhang Z, Weisbecker H, et al. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. Sci Adv 2022;8:eade0838.

145. Chen Z, Kong S, He Y, et al. Soft, bistable actuators for reconfigurable 3D electronics. ACS Appl Mater Interf 2021;13:41968-77.

146. Humood M, Lefebvre J, Shi Y, et al. Fabrication and mechanical cycling of polymer microscale architectures for 3D MEMS sensors. Adv Eng Mater 2019;21:1801254.

147. Liu F, Chen Y, Song H, et al. High performance, tunable electrically small antennas through mechanically guided 3D assembly. Small 2019;15:e1804055.

148. Sim K, Rao Z, Li Y, Yang D, Yu C. Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays. NPJ Flex Electron 2018:2.

149. Ko HC, Stoykovich MP, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008;454:748-53.

150. Lee SW, Baek S, Park SW, et al. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat Commun 2020;11:6072.

151. Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat Electron 2021;4:513-21.

152. Mawlong LPL, Ahn J. 3D-structured photodetectors based on 2D transition-metal dichalcogenide. Small Struct 2022;3:2100149.

153. Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2016;2:e1600418.

154. Kang S, Lee HE, Wang HS, et al. Self-powered flexible full-color display via dielectric-tuned hybrimer triboelectric nanogenerators. ACS Energy Lett 2021;6:4097-107.

155. Lee Y, Kim BJ, Hu L, Hong J, Ahn J. Morphable 3D structure for stretchable display. Mater Today 2022;53:51-7.

156. Yong K, De S, Hsieh EY, Leem J, Aluru NR, Nam S. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater Today 2020;34:58-65.

157. Wang X, Guo X, Ye J, et al. Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Adv Mater 2019;31:e1805615.

158. Lee W, Liu Y, Lee Y, et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat Commun 2018;9:1417.

159. Kim DC, Yun H, Kim J, et al. Three-dimensional foldable quantum dot light-emitting diodes. Nat Electron 2021;4:671-80.

160. Li Y, Luo C, Yu K, Wang X. Remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures via liquid crystal elastomer platforms. ACS Appl Mater Interf 2021;13:8929-39.

161. Park Y, Luan H, Kwon K, et al. Transformable, freestanding 3D mesostructures based on transient materials and mechanical interlocking. Adv Funct Mater 2019;29:1903181.

162. Azani M, Hassanpour A, Torres T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)‐free flexible solar cells. Adv Energy Mater 2020;10:2002536.

163. Heo S, Kim DH, Song YM, Lee GJ. Determining the effectiveness of radiative cooler-integrated solar cells. Adv Energy Mater 2022;12:2103258.

164. Huang S, Tang L, Najafabadi HS, Chen S, Ren Z. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy 2017;38:504-9.

165. Lee MH, Lee J, Jung SK, et al. A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems. Adv Mater 2021;33:e2004902.

166. Huang I, Zhang Y, Arafa HM, et al. High performance dual-electrolyte magnesium-iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ Sci 2022;15:4095-108.

167. Jinno H, Fukuda K, Xu X, et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat Energy 2017;2:780-5.

168. Lu L, Yang Z, Meacham K, et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv Energy Mater 2018;8:1703035.

169. Chu H, Jang H, Lee Y, Chae Y, Ahn J. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 2016;27:298-305.

170. Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 2020;67:104197.

171. Gong X, Yang Q, Zhi C, Lee PS. Stretchable energy storage devices: from materials and structural design to device assembly. Adv Energy Mater 2021;11:2003308.

172. Han M, Wang H, Yang Y, et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2019;2:26-35.

173. Kim YG, Hong S, Hwang B, Ahn SH, Song JH. Improved performance of stretchable piezoelectric energy harvester based on stress rearrangement. Sci Rep 2022;12:19149.

174. Yang C, Wu X, Xia H, et al. 3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance. ACS Nano 2022;16:2699-710.

175. Xia X, Afshar A, Yang H, et al. Electrochemically reconfigurable architected materials. Nature 2019;573:205-13.

176. Guo Z, Yu Y, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodynet application. Adv Energy Mater 2022;12:2102993.

177. Miao L, Song Y, Ren Z, et al. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting. Adv Mater 2021;33:e2102691.

178. Ling Y, Zhuang X, Xu Z, et al. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with programmed geometries and outstanding electromechanical properties. ACS Nano 2018;12:12456-63.

179. Pan Y, Yang Z, Li C, Hassan SU, Shum HC. Plant-inspired TransfOrigami microfluidics. Sci Adv 2022;8:eabo1719.

180. Sim K, Ershad F, Zhang Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat Electron 2020;3:775-84.

181. Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng 2021;5:737-48.

182. Bai W, Shin J, Fu R, et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat Biomed Eng 2019;3:644-54.

183. Zhang Y, Mickle AD, Gutruf P, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5:eaaw5296.

184. Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023;7:405-23.

185. Wang X, Feiner R, Luan H, et al. Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. Extreme Mech Lett 2020;35:100634.

186. Song E, Xie Z, Bai W, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat Biomed Eng 2021;5:759-71.

187. Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat Biomed Eng 2021;5:749-58.

188. Han M, Chen L, Aras K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat Biomed Eng 2020;4:997-1009.

189. Park Y, Chung TS, Rogers JA. Three dimensional bioelectronic interfaces to small-scale biological systems. Curr Opin Biotechnol 2021;72:1-7.

190. Zhao J, Li W, Guo X, Wang H, Rogers JA, Huang Y. Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin 2021;46:107-14.

191. Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv 2019;5:eaaw2459.

192. Xue Z, Jin T, Xu S, et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci Adv 2022;8:eabm6922.

193. Gu Y, Wang C, Kim N, et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat Nanotechnol 2022;17:292-300.

194. Chen Z, Anandakrishnan N, Xu Y, Zhao R. Compressive buckling fabrication of 3D cell-laden microstructures. Adv Sci 2021;8:e2101027.

195. Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun 2020;11:1180.

196. Park Y, Franz CK, Ryu H, et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci Adv 2021:7.

197. Huang Q, Tang B, Romero JC, et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv 2022;8:eabq5031.

198. Lou Z, Wang L, Jiang K, Shen G. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 2019;26:176-98.

199. Zhang F, Jin T, Xue Z, Zhang Y. Recent progress in three-dimensional flexible physical sensors. Int J Smart Nano Mater 2022;13:17-41.

200. Wu S, Peng S, Yu Y, Wang C. Strategies for designing stretchable strain sensors and conductors. Adv Mater Technol 2020;5:1900908.

201. Kim BH, Li K, Kim JT, et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 2021;597:503-10.

202. Goh GL, Agarwala S, Yong WY. 3D printing of microfluidic sensor for soft robots: a preliminary study in design and fabrication. Available from: https://dr.ntu.edu.sg/handle/10356/84409 [Last accessed on 9 May 2023].

203. Truby RL, Wehner M, Grosskopf AK, et al. Soft somatosensitive actuators via embedded 3D printing. Adv Mater 2018;30:e1706383.

204. Peng S, Wang Z, Lin J, et al. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold. Adv Funct Mater 2021;31:2008729.

205. Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-9.

206. Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays. Nat Commun 2022;13:2121.

207. Liu J, Jiang S, Xiong W, Zhu C, Li K, Huang Y. Self-healing kirigami assembly strategy for conformal electronics. Adv Funct Mater 2022;32:2109214.

208. Katiyar AK, Thai KY, Yun WS, Lee J, Ahn JH. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci Adv 2020;6:eabb0576.

209. Cheng X, Zhang F, Bo R, et al. An anti-fatigue design strategy for 3D ribbon-shaped flexible electronics. Adv Mater 2021;33:e2102684.

210. Wang Y, Li X, Fan S, et al. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Appl Mater Interf 2021;13:8901-8.

211. Zhalmuratova D, Chung H. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Appl Polym Mater 2020;2:1073-91.

212. Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019;575:330-5.

213. Sun Y, Li D, Wu M, et al. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsyst Nanoeng 2022;8:37.

214. Patel DK, Huang X, Luo Y, et al. Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots. Adv Mater Technol 2023;8:2201259.

215. Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv Mater 2021;33:e2003387.

216. Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell Syst 2021;3:2000223.

217. Ning X, Yu X, Wang H, et al. Mechanically active materials in three-dimensional mesostructures. Sci Adv 2018;4:eaat8313.

218. Xiang S, Su Y, Yin H, Li C, Zhu M. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021;85:105965.

219. Han M, Guo X, Chen X, et al. Submillimeter-scale multimaterial terrestrial robots. Sci Robot 2022;7:eabn0602.

220. Deng H, Sattari K, Xie Y, Liao P, Yan Z, Lin J. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat Commun 2020;11:6325.

221. Zhu Y, Birla M, Oldham KR, Filipov ET. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv Funct Mater 2020;30:2003741.

222. Yi S, Wang L, Chen Z, et al. High-throughput fabrication of soft magneto-origami machines. Nat Commun 2022;13:4177.

223. Lin Z, Novelino LS, Wei H, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small 2020;16:e2002229.

224. Xiang X, Fu Z, Zhang S, et al. The mechanical characteristics of graded Miura-ori metamaterials. Mater Des 2021;211:110173.

225. Kadic M, Milton GW, van Hecke M, Wegener M. 3D metamaterials. Nat Rev Phys 2019;1:198-210.

226. Cheng L, Tang T, Yang H, et al. The twisting of dome-like metamaterial from brittle to ductile. Adv Sci 2021;8:2002701.

227. Pan R, Liu Z, Zhu W, Du S, Gu C, Li J. Asymmetrical chirality in 3D bended metasurface. Adv Funct Mater 2021;31:2100689.

228. Farzaneh A, Pawar N, Portela CM, Hopkins JB. Sequential metamaterials with alternating Poisson’s ratios. Nat Commun 2022;13:1041.

229. Zhong Q, Ding H, Gao B, He Z, Gu Z. Advances of microfluidics in biomedical engineering. Adv Mater Technol 2019;4:1800663.

230. Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 2020;92:150-68.

231. Raj M K, Chakraborty S. PDMS microfluidics: a mini review. J Appl Polym Sci 2020;137:48958.

232. Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible microfluidics: fundamentals, recent developments, and applications. Micromachines 2019;10:830.

233. Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-des Manuf 2021;4:311-43.

234. Weigel N, Männel MJ, Thiele J. Flexible materials for high-resolution 3D printing of microfluidic devices with integrated droplet size regulation. ACS Appl Mater Interf 2021;13:31086-101.

235. Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 2014;14:2202-11.

236. Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011;23:H178-83.

237. Wang Z, Jiang H, Wu G, et al. Shape-programmable three-dimensional microfluidic structures. ACS Appl Mater Interf 2022;14:15599-607.

238. Ng PF, Lee KI, Yang M, Fei B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers 2019;11:64.

239. Zhai Z, Wu L, Jiang H. Mechanical metamaterials based on origami and kirigami. Applied Physics Reviews 2021;8:041319.

240. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature 2016;540:371-8.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/