REFERENCES
1. Raeis-hosseini N, Park Y, Lee J. Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv Funct Mater 2018;28:1800553.
2. Sarkar D, Tao J, Wang W, et al. Mimicking biological synaptic functionality with an indium phosphide synaptic device on silicon for scalable neuromorphic computing. ACS Nano 2018;12:1656-63.
3. Hu M, Graves CE, Li C, et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv Mater 2018;30:1705914.
4. Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv Mater 2020;32:e1903558.
5. Shim H, Sim K, Ershad F, et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci Adv 2019;5:eaax4961.
6. Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. Invert Neurosci 2018;18:4.
7. Zidan MA, Strachan JP, Lu WD. The future of electronics based on memristive systems. Nat Electron 2018;1:22-9.
9. Doetsch GS. Patterns in the brain. Neuronal population coding in the somatosensory system. Physiol Behav 2000;69:187-201.
10. Yang M, Zhao X, Tang Q, et al. Stretchable and conformable synapse memristors for wearable and implantable electronics. Nanoscale 2018;10:18135-44.
11. van de Burgt Y, Lubberman E, Fuller EJ, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater 2017;16:414-8.
12. Chen J, Huang W, Zheng D, et al. Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat Mater 2022;21:564-71.
13. Nguyen TD, Trung TQ, Lee Y, Lee N. Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv Eng Mater 2022;24:2100918.
14. Huang W, Wang Y, Zhang Y, et al. Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon 2022;189:386-94.
15. Molina-Lopez F, Gao TZ, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat Commun 2019;10:2676.
16. Li J, Li N, Wang Q, et al. Highly stretchable MoS2-based transistors with opto-synaptic functionalities. Adv Elect Materials 2022;8:2200238.
17. Shim H, Jang S, Jang JG, et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res 2022;15:758-64.
18. Xu F, Zhang C, Zhao X, et al. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J Mater Chem C 2022;10:10586-94.
19. Lee Y, Oh JY, Xu W, et al. Stretchable organic optoelectronic sensorimotor synapse. Sci Adv 2018;4:eaat7387.
20. Wang Y, Liu D, Zhang Y, et al. Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano 2022;16:8283-93.
21. Liu L, Xu W, Ni Y, et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 2022;16:2282-91.
22. Shim H, Ershad F, Patel S, et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat Electron 2022;5:660-71.
23. Wang X, Yan Y, Li E, et al. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 2020;75:104952.
24. Wang X, Li E, Liu Y, et al. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 2021;90:106497.
25. Wang H, Yang M, Tang Q, Zhao X, Tong Y, Liu Y. Flexible, conformal organic synaptic transistors on elastomer for biomedical applications. Adv Funct Mater 2019;29:1901107.
26. Guo L, Wen J, Cheng G, Yuan N, Ding J. Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes. J Mater Chem C 2016;4:9762-70.
27. Wang Z, Wang L, Nagai M, Xie L, Yi M, Huang W. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater 2017;3:1600510.
28. Kuzum D, Yu S, Wong HS. Synaptic electronics: materials, devices and applications. Nanotechnology 2013;24:382001.
29. Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science 2018;360:998-1003.
30. He Y, Yang Y, Nie S, Liu R, Wan Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J Mater Chem C 2018;6:5336-52.
31. Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014;345:668-73.
32. Burr GW, Shelby RM, Sebastian A, et al. Neuromorphic computing using non-volatile memory. Adv Phys 2017;2:89-124.
33. Liao X, Xiao L, Yang C, Lu Y. MilkyWay-2 supercomputer: system and application. Front Comput Sci 2014;8:345-56.
34. Sun J, Fu Y, Wan Q. Organic synaptic devices for neuromorphic systems. J Phys D Appl Phys 2018;51:314004.
35. Wan CJ, Zhu LQ, Liu YH, et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv Mater 2016;28:3557-63.
37. Jayathilaka WADM, Qi K, Qin Y, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 2019;31:e1805921.
38. Mehrali M, Bagherifard S, Akbari M, et al. Blending electronics with the human body: a pathway toward a cybernetic future. Adv Sci 2018;5:1700931.
39. Shanechi MM, Orsborn AL, Moorman HG, Gowda S, Dangi S, Carmena JM. Rapid control and feedback rates enhance neuroprosthetic control. Nat Commun 2017;8:13825.
40. Gulati T, Ramanathan DS, Wong CC, Ganguly K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat Neurosci 2014;17:1107-13.
41. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016:1.
43. Abbas Y, Jeon YR, Sokolov AS, Kim S, Ku B, Choi C. Compliance-free, digital set and analog reset synaptic characteristics of sub-tantalum oxide based neuromorphic device. Sci Rep 2018;8:1228.
44. Wang Z, Joshi S, Savel'ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 2017;16:101-8.
45. Kim S, Du C, Sheridan P, Ma W, Choi S, Lu WD. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett 2015;15:2203-11.
46. Yu R, He L, Gao C, et al. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat Commun 2022;13:7019.
47. John RA, Ko J, Kulkarni MR, et al. Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 2017;13:1701193.
48. Zhang X, Wu S, Yu R, et al. Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter 2022;5:3023-40.
49. Sangwan VK, Lee HS, Bergeron H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018;554:500-4.
50. Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015;521:61-4.
51. Xu W, Lee Y, Min SY, Park C, Lee TW. Simple, inexpensive, and rapid approach to fabricate cross-shaped memristors using an inorganic-nanowire-digital-alignment technique and a one-step reduction process. Adv Mater 2016;28:527-32.
52. Nishitani Y, Kaneko Y, Ueda M, Morie T, Fujii E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J Appl Phys 2012;111:124108.
53. Sun J, Oh S, Choi Y, et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv Funct Mater 2018;28:1804397.
54. Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater 2019;29:1903700.
55. Chen Y, Yu H, Gong J, et al. Artificial synapses based on nanomaterials. Nanotechnology 2019;30:012001.
56. John RA, Liu F, Chien NA, et al. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv Mater 2018;30:e1800220.
57. Jiang J, Hu W, Xie D, et al. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019;11:1360-9.
58. Wang J, Chen Y, Kong L, Fu Y, Gao Y, Sun J. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Appl Phys Lett 2018;113:151101.
59. Kaneko Y, Nishitani Y, Ueda M. Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans Electron Devices 2014;61:2827-33.
60. Liu YH, Zhu LQ, Feng P, Shi Y, Wan Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 2015;27:5599-604.
61. Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 2014;15:250-63.
62. Li X, Liu Y, Zhang J, Wu F, Hu M, Yang H. Flexible artificial synapses based on field effect transistors: from materials, mechanics towards applications. Adv Intell Syst 2022;4:2200015.
63. Ni Y, Wang Y, Xu W. Recent Process of flexible transistor-structured memory. Small 2021;17:e1905332.
64. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.
65. Park HL, Kim H, Lim D, et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv Mater 2020;32:e1906899.
66. Bu X, Xu H, Shang D, Li Y, Lv H, Liu Q. Ion-gated transistor: an enabler for sensing and computing integration. Advanced Intelligent Systems 2020;2:2000156.
67. Jin T, Gao J, Wang Y, Chen W. Flexible neuromorphic electronics based on low-dimensional materials. Sci China Mater 2022;65:2154-9.
68. Cao G, Meng P, Chen J, et al. 2D material based synaptic devices for neuromorphic computing. Adv Funct Mater 2021;31:2005443.
69. Lee G, Baek JH, Ren F, Pearton SJ, Lee GH, Kim J. Artificial neuron and synapse devices based on 2D materials. Small 2021;17:e2100640.
70. Zhang C, Zhou H, Chen S, et al. Recent progress on 2D materials-based artificial synapses. Crit Rev Solid State Mater 2022;47:665-90.
71. Liu Y, Liu D, Gao C, et al. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat Commun 2022;13:7917.
72. Wu X, Li E, Liu Y, et al. Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 2021;85:106000.
73. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature 2005;435:1102-7.
74. Wang G, Wang R, Kong W, Zhang J. Simulation of retinal ganglion cell response using fast independent component analysis. Cogn Neurodyn 2018;12:615-24.
75. Jiang Y, Li X, Liu B, et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng 2018;2:508-21.
76. Chen S, Lou Z, Chen D, Shen G. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater 2018;30:1705400.
77. Wang H, Zhao Q, Ni Z, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater 2018;30:e1803961.
78. Huang X, Liu Y, Liu G, et al. Short-wave infrared synaptic phototransistor with ambient light adaptability for flexible artificial night visual system. Adv Funct Materials 2023;33:2208836.
79. Jiang C, Liu J, Yang L, Gong J, Wei H, Xu W. A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition (Adv.Sci.24/2022). Adv Sci 2022;9:e2106124.
80. Shan L, Zeng H, Liu Y, et al. Artificial tactile sensing system with photoelectric output for high accuracy haptic texture recognition and parallel information processing. Nano Lett 2022;22:7275-83.
81. Wan H, Cao Y, Lo LW, Zhao J, Sepúlveda N, Wang C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020;14:10402-12.
82. Florence TJ, Reiser MB. Neuroscience: hot on the trail of temperature processing. Nature 2015;519:296-7.
83. Frank DD, Jouandet GC, Kearney PJ, Macpherson LJ, Gallio M. Temperature representation in the Drosophila brain. Nature 2015;519:358-61.
84. Beauchamp MS. See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr Opin Neurobiol 2005;15:145-53.
85. Yu J, Yang X, Gao G, et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci Adv 2021:7.
86. Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S. Bioinspired multisensory neural network with crossmodal integration and recognition. Nat Commun 2021;12:1120.