REFERENCES
1. Gao Y, Sun D, Chen J, et al. Photoelastic Organogel with Multiple Stimuli Responses. Small 2022;18:e2204140.
2. Lu T, Ma C, Wang T. Mechanics of dielectric elastomer structures: a review. Extreme Mech Lett 2020;38:100752.
3. Gao Y, Chen J, Han X, et al. A universal strategy for tough adhesion of wet soft material. Adv Funct Mater 2020;30:2003207.
4. Herbert KM, Fowler HE, Mccracken JM, Schlafmann KR, Koch JA, White TJ. Synthesis and alignment of liquid crystalline elastomers. Nat Rev Mater 2022;7:23-38.
6. Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28:4203-18.
7. Lu N, Kim D. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 2014;1:53-62.
8. Guo X, Liu L, Zhou B, Liu Y, Leng J. Influence of strain rates on the mechanical behaviors of shape memory polymer. Smart Mater Struct 2015;24:095009.
9. Guo X, Ni X, Li J, et al. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion. Adv Mater 2021;33:e2004919.
10. Zhang Y, Zhang N, Hingorani H, et al. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv Funct Mater 2019;29:1806698.
11. Ge Q, Chen Z, Cheng J, et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci Adv 2021;7:eaba4261.
12. Traugutt NA, Mistry D, Luo C, Yu K, Ge Q, Yakacki CM. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv Mater 2020;32:e2000797.
13. Zhang X, Yao L, Yan H, et al. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. Soft Matter 2022;18:9181-96.
14. Li S, Bai H, Liu Z, et al. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci Adv 2021:7.
15. Liang X, Li D. A Programmable liquid crystal elastomer metamaterials with soft elasticity. Front Robot AI 2022;9:849516.
16. Zhang Z, Huo Y. Programmable mechanical energy absorption and dissipation of liquid crystal elastomers: modeling and simulations. Adv Eng Mater 2022;24:2100590.
17. White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 2015;14:1087-98.
18. Barnes M, Verduzco R. Direct shape programming of liquid crystal elastomers. Soft Matter 2019;15:870-9.
19. Fang M, Liu T, Xu Y, et al. Ultrafast digital fabrication of designable architectured liquid crystalline elastomer. Adv Mater 2021;33:e2105597.
21. Lehmann W, Skupin H, Tolksdorf C, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 2001;410:447-50.
22. Buguin A, Li MH, Silberzan P, Ladoux B, Keller P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc 2006;128:1088-9.
23. Wang Z, He Q, Wang Y, Cai S. Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 2019;15:2811-6.
24. Guin T, Hinton HE, Burgeson E, et al. Tunable electromechanical liquid crystal elastomer actuators. Adv Intell Syst 2020;2:2000022.
25. Abadia A, Herbert KM, Matavulj VM, White TJ, Schwartz DK, Kaar JL. Chemically triggered changes in mechanical properties of responsive liquid crystal polymer networks with immobilized urease. J Am Chem Soc 2021;143:16740-9.
26. Saed MO, Elmadih W, Terentjev A, Chronopoulos D, Williamson D, Terentjev EM. Impact damping and vibration attenuation in nematic liquid crystal elastomers. Nat Commun 2021;12:6676.
27. Skačej G, Zannoni C. Main-chain swollen liquid crystal elastomers: a molecular simulation study. Soft Matter 2011;7:9983.
28. Wang Z, Guo Y, Cai S, Yang J. Three-dimensional printing of liquid crystal elastomers and their applications. ACS Appl Polym Mater 2022;4:3153-68.
29. Krause S, Dersch R, Wendorff JH, Finkelmann H. Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol Rapid Commun 2007;28:2062-8.
30. Zhao J, Zhang L, Hu J. Varied alignment methods and versatile actuations for liquid crystal elastomers: a review. Adv Intell Syst 2022;4:2100065.
31. Zhu C, Lu Y, Jiang L, Yu Y. Liquid crystal soft actuators and robots toward mixed reality. Adv Funct Mater 2021;31:2009835.
32. Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater 2010;22:3366-87.
33. Ambulo CP, Tasmim S, Wang S, Abdelrahman MK, Zimmern PE, Ware TH. Processing advances in liquid crystal elastomers provide a path to biomedical applications. J Appl Phys 2020;128:140901.
34. Pang W, Cheng X, Zhao H, et al. Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. Natl Sci Rev 2020;7:342-54.
35. Visschers FLL, Hendrikx M, Zhan Y, Liu D. Liquid crystal polymers with motile surfaces. Soft Matter 2018;14:4898-912.
36. Pang X, Lv JA, Zhu C, Qin L, Yu Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv Mater 2019;31:e1904224.
37. Wang Z, Cai S. Recent progress in dynamic covalent chemistries for liquid crystal elastomers. J Mater Chem B 2020;8:6610-23.
38. Shaha RK, Torbati AH, Frick CP. Body-temperature s hape-shifting liquid crystal elastomers. J Appl Polym Sci 2021;138:50136.
39. Traugutt NA, Volpe RH, Bollinger MS, et al. Liquid-crystal order during synthesis affects main-chain liquid-crystal elastomer behavior. Soft Matter 2017;13:7013-25.
40. Kuenstler AS, Kim H, Hayward RC. Liquid crystal elastomer waveguide actuators. Adv Mater 2019;31:e1901216.
41. Ahn S, Ware TH, Lee KM, Tondiglia VP, White TJ. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv Funct Mater 2016;26:5819-26.
42. Wang C, Sim K, Chen J, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater 2018;30:e1706695.
43. Wu Y, Zhang S, Yang Y, Li Z, Wei Y, Ji Y. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci Adv 2022;8:eabo6021.
44. Li Y, Yu H, Yu K, Guo X, Wang X. Reconfigurable three-dimensional mesotructures of spatially programmed liquid crystal elastomers and their ferromagnetic composites. Adv Funct Mater 2021;31:2100338.
45. He Q, Wang Z, Wang Y, Minori A, Tolley MT, Cai S. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci Adv 2019;5:eaax5746.
46. 46. Kotikian A, McMahan C, Davidson EC et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot 2019;4:eaax7044.
47. Pang W, Xu S, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces. Proc Natl Acad Sci USA 2022;119:e2215028119.
48. Han WC, Lee YJ, Kim SU, Lee HJ, Kim YS, Kim DS. Versatile mechanochromic sensor based on highly stretchable chiral liquid crystalline elastomer. Small 2023;19:e2206299.
49. Pozo M, Delaney C, Bastiaansen CWM, Diamond D, Schenning APHJ, Florea L. Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist. ACS Nano 2020;14:9832-9.
50. Tasmim S, Yousuf Z, Rahman FS, et al. Liquid crystal elastomer based dynamic device for urethral support: potential treatment for stress urinary incontinence. Biomaterials 2023;292:121912.
51. Gao Y, Mori T, Manning S, et al. Biocompatible 3D liquid crystal elastomer cell scaffolds and foams with primary and secondary porous architecture. ACS Macro Lett 2016;5:4-9.
52. Wu J, Yao S, Zhang H, et al. Liquid crystal elastomer metamaterials with giant biaxial thermal shrinkage for enhancing skin regeneration. Adv Mater 2021;33:e2106175.
53. Liu Q, Liu Y, Lv J, Chen E, Yu Y. Photocontrolled liquid transportation in microtubes by manipulating mesogen orientations in liquid crystal polymers. Adv Intell Syst 2019;1:1900060.
54. Roach DJ, Yuan C, Kuang X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interf 2019;11:19514-21.
55. Finkelmann H, Kock H, Rehage G. Investigations on liquid crystalline polysiloxanes. Makromol Chem Rapid Commun 1981;2:317-22.
56. Yakacki CM, Saed M, Nair DP, Gong T, Reed SM, Bowman CN. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv 2015;5:18997-9001.
57. Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater 2018;30:1706164.
58. Enz E, Baumeister U, Lagerwall J. Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres. Beilstein J Org Chem 2009;5:58.
59. Ohm C, Morys M, Forst FR, et al. Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process. Soft Matter 2011;7:3730.
60. Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater 2009;21:4859-62.
61. Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimagi A. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater 2017;29:1701814.
62. Aharoni H, Xia Y, Zhang X, Kamien RD, Yang S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc Natl Acad Sci USA 2018;115:7206-11.
63. Wang Z, Li K, He Q, Cai S. A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv Mater 2019;31:e1806849.
64. Shahsavan H, Aghakhani A, Zeng H, et al. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc Natl Acad Sci USA 2020;117:5125-33.
66. Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 2014;13:36-41.
67. Zou W, Dong J, Luo Y, Zhao Q, Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater 2017;29:1606100.
68. Cui Y, Wang C, Sim K, et al. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Adv 2018;8:025215.
69. Cui Y, Yin Y, Wang C, et al. Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers. Appl Math Mech Engl Ed 2019;40:943-52.
70. Guin T, Settle MJ, Kowalski BA, et al. Layered liquid crystal elastomer actuators. Nat Commun 2018;9:2531.
71. Ohm C, Fleischmann E, Kraus I, Serra C, Zentel R. Control of the properties of micrometer-sized actuators from liquid crystalline elastomers prepared in a microfluidic setup. Adv Funct Mater 2010;20:4314-22.
72. de Jeu WH, Obraztsov EP, Ostrovskii BI, et al. Order and strain in main-chain smectic liquid-crystalline polymers and elastomers. Eur Phys J E 2008;25:117-8.
73. Komp A, Finkelmann H. A new type of macroscopically oriented smectic-a liquid crystal elastomer. Macromol Rapid Commun 2007;28:55-62.
74. Beyer P, Krueger M, Giesselmann F, Zentel R. Photoresponsive ferroelectric liquid-crystalline polymers. Adv Funct Mater 2007;17:109-14.
75. Nishikawa E, Finkelmann H. Smectic-A liquid single crystal elastomers - strain induced break-down of smectic layers. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1521-3935(19990201)200:2%3C312::AID-MACP312%3E3.0.CO;2-Y [Last accessed on 12 Apr 2023].
76. Thomsen DL, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 2001;34:5868-75.
77. Ahir S, Tajbakhsh A, Terentjev E. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater 2006;16:556-60.
78. Soltani M, Raahemifar K, Nokhosteen A, Kashkooli FM, Zoudani EL. Numerical methods in studies of liquid crystal elastomers. Polymers 2021;13:1650.
79. Yang R, Zhao Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes. Angew Chem Int Ed Engl 2017;56:14202-6.
80. Baumgartner M, Hartmann F, Drack M, et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat Mater 2020;19:1102-9.
81. Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ. Actuating materials. Voxelated liquid crystal elastomers. Science 2015;347:982-4.
82. Konya A, Gimenez-pinto V, Selinger RLB. Modeling defects, shape evolution, and programmed auto-origami in liquid crystal elastomers. Front Mater 2016;3:24.
83. McConney ME, Martinez A, Tondiglia VP, et al. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv Mater 2013;25:5880-5.
84. Xia Y, Zhang X, Yang S. Instant locking of molecular ordering in liquid crystal elastomers by oxygen-mediated thiol-acrylate click reactions. Angew Chem Int Ed Engl 2018;57:5665-8.
85. Xia Y, Cedillo-Servin G, Kamien RD, Yang S. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D microchannels. Adv Mater 2016;28:9637-43.
86. Saed MO, Ambulo CP, Kim H, et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv Funct Mater 2019;29:1806412.
87. Jampani VSR, Mulder DJ, De Sousa KR, Gélébart A, Lagerwall JPF, Schenning APHJ. Micrometer-scale porous buckling shell actuators based on liquid crystal networks. Adv Funct Mater 2018;28:1801209.
88. He Q, Wang Z, Wang Y, Song Z, Cai S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl Mater Interf 2020;12:35464-74.
89. Zhai Y, Ng TN. Self-sustained robots based on functionally graded elastomeric actuators carrying up to 22 times their body weight. Adv Intell Syst 2021;[Accepted]:2100085.
90. Ambulo CP, Burroughs JJ, Boothby JM, Kim H, Shankar MR, Ware TH. Four-dimensional printing of liquid crystal elastomers. ACS Appl Mater Interf 2017;9:37332-9.
91. Ford MJ, Palaniswamy M, Ambulo CP, Ware TH, Majidi C. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite. Soft Matter 2020;16:5878-85.
92. Liu J, Gao Y, Wang H, Poling-skutvik R, Osuji CO, Yang S. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites. Adv Intell Syst 2020;2:1900163.
93. Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc 2016;138:2138-41.
94. Wang M, Sayed SM, Guo L, et al. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules 2016;49:663-71.
95. Montazami R, Spillmann CM, Naciri J, Ratna BR. Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sens Actuator A Phys 2012;178:175-8.
96. Wójcik MM, Wróbel J, Jańczuk ZZ, et al. Liquid-crystalline elastomers with gold nanoparticle cross-linkers. Chemistry 2017;23:8912-20.
97. Sun Y, Evans JS, Lee T, et al. Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett 2012;100:241901.
98. Zhang J, Wang J, Zhao L, et al. Photo responsive silver nanoparticles incorporated liquid crystalline elastomer nanocomposites based on surface plasmon resonance. Chem Res Chin Univ 2017;33:839-46.
99. Guo LX, Liu MH, Sayed SM, et al. A calamitic mesogenic near-infrared absorbing croconaine dye/liquid crystalline elastomer composite. Chem Sci 2016;7:4400-6.
100. Liu L, Liu MH, Deng LL, Lin BP, Yang H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property. J Am Chem Soc 2017;139:11333-6.
101. Qin B, Yang W, Xu J, et al. Photo-actuation of liquid crystalline elastomer materials doped with visible absorber dyes under quasi-daylight. Polymers 2019;12:54.
102. Zuo B, Wang M, Lin B, Yang H. Photomodulated tricolor-changing artificial flowers. Chem Mater 2018;30:8079-88.
103. Huang Z, Tsui GC, Deng Y, et al. Bioinspired near-infrared light-induced ultrafast soft actuators with tunable deformation and motion based on conjugated polymers/liquid crystal elastomers. J Mater Chem C 2022;10:12731-40.
104. Liu W, Guo L, Lin B, Zhang X, Sun Y, Yang H. Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers. Macromolecules 2016;49:4023-30.
105. Hussain M, Jull EIL, Mandle RJ, Raistrick T, Hine PJ, Gleeson HF. Liquid crystal elastomers for biological applications. Nanomaterials 2021;11:813.
106. Dong L, Zhao Y. Photothermally driven liquid crystal polymer actuators. Mater Chem Front 2018;2:1932-43.
107. Hauser AW, Liu D, Bryson KC, Hayward RC, Broer DJ. Reconfiguring nanocomposite liquid crystal polymer films with visible light. Macromolecules 2016;49:1575-81.
108. Sánchez-Ferrer A, Merekalov A, Finkelmann H. Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers. Macromol Rapid Commun 2011;32:671-8.
109. Liu D, Liu L, Onck PR, Broer DJ. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. Proc Natl Acad Sci USA 2015;112:3880-5.
110. Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater 2018;30:e1703554.
111. Gelebart AH, Mc Bride M, Schenning APHJ, Bowman CN, Broer DJ. Photoresponsive fiber array: toward mimicking the collective motion of cilia for transport applications. Adv Funct Mater 2016;26:5322-7.
112. Yu Y, Maeda T, Mamiya J, Ikeda T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew Chem Int Ed Engl 2007;46:881-3.
113. Palagi S, Mark AG, Reigh SY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 2016;15:647-53.
114. Rogóż M, Zeng H, Xuan C, Wiersma DS, Wasylczyk P. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv Opt Mater 2016;4:1689-94.
115. Guo Y, Liu N, Cao Q, et al. Photothermal diol for NIR-responsive liquid crystal elastomers. ACS Appl Polym Mater 2022;4:6202-10.
116. Yamada M, Kondo M, Miyasato R, et al. Photomobile polymer materials - various three-dimensional movements. J Mater Chem 2009;19:60-2.
117. Schuhladen S, Preller F, Rix R, Petsch S, Zentel R, Zappe H. Iris-like tunable aperture employing liquid-crystal elastomers. Adv Mater 2014;26:7247-51.
118. Fowler HE, Rothemund P, Keplinger C, White TJ. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv Mater 2021;33:e2103806.
120. Chambers M, Finkelmann H, Remškar M, Sánchez-ferrer A, Zalar B, Žumer S. Liquid crystal elastomer-nanoparticle systems for actuation. J Mater Chem 2009;19:1524-31.
121. Papadopoulos P, Heinze P, Finkelmann H, Kremer F. Electromechanical properties of smectic C* liquid crystal elastomers under shear. Macromolecules 2010;43:6666-70.
122. Ambulo CP, Ford MJ, Searles K, Majidi C, Ware TH. 4D-printable liquid metal-liquid crystal elastomer composites. ACS Appl Mater Interf 2021;13:12805-13.
123. Kotikian A, Morales JM, Lu A, et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv Mater 2021;33:e2101814.
124. Zhang R, Redford SA, Ruijgrok PV, et al. Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nat Mater 2021;20:875-82.
125. Ford MJ, Ambulo CP, Kent TA, et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc Natl Acad Sci USA 2019;116:21438-44.
126. Davidson ZS, Shahsavan H, Aghakhani A, et al. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci Adv 2019;5:eaay0855.
127. Harris KD, Bastiaansen CW, Lub J, Broer DJ. Self-assembled polymer films for controlled agent-driven motion. Nano Lett 2005;5:1857-60.
128. Haan LT, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc 2014;136:10585-8.
129. Abadia AV, Herbert KM, White TJ, Schwartz DK, Kaar JL. Biocatalytic 3D actuation in liquid crystal elastomers via enzyme patterning. ACS Appl Mater Interf ;2022:26480-8.
130. Michal BT, Mckenzie BM, Felder SE, Rowan SJ. Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 2015;48:3239-46.
131. Harris KD, Bastiaansen CWM, Broer DJ. Physical properties of anisotropically swelling hydrogen-bonded liquid crystal polymer actuators. J Microelectromech Syst 2007;16:480-8.
132. Boothby JM, Kim H, Ware TH. Shape changes in chemoresponsive liquid crystal elastomers. Sens Actuators B Chem 2017;240:511-8.
133. Zhang J, Guo Y, Hu W, Soon RH, Davidson ZS, Sitti M. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv Mater 2021;33:e2006191.
134. Herrera-Posada S, Mora-Navarro C, Ortiz-Bermudez P, et al. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates. Mater Sci Eng C Mater Biol Appl 2016;65:369-78.
135. Zhang J, Guo Y, Hu W, Sitti M. Wirelessly actuated thermo- and magneto-responsive soft bimorph materials with programmable shape-morphing. Adv Mater 2021;33:e2100336.
136. Zeng H, Wani OM, Wasylczyk P, Priimagi A. Light-driven, caterpillar-inspired miniature inching robot. Macromol Rapid Commun 2018;39:1700224.
137. Rogóż M, Dradrach K, Xuan C, Wasylczyk P. A millimeter-scale snail robot based on a light-powered liquid crystal elastomer continuous actuator. Macromol Rapid Commun 2019;40:e1900279.
138. Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS. Light-fueled microscopic walkers. Adv Mater 2015;27:3883-7.
139. Hu J, Nie Z, Wang M, Liu Z, Huang S, Yang H. Springtail-inspired light-driven soft jumping robots based on liquid crystal elastomers with monolithic three-leaf panel fold structure. Angew Chem Int Ed Engl 2023;62:e202218227.
140. Zhao Y, Hong Y, Qi F, Chi Y, Su H, Yin J. Self-sustained snapping drives autonomous dancing and motion in free-standing wavy rings. Adv Mater 2023;35:e2207372.
141. Martella D, Nocentini S, Nuzhdin D, Parmeggiani C, Wiersma DS. Photonic microhand with autonomous action. Adv Mater 2017;29:1704047.
142. Huang Y, Bisoyi HK, Huang S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew Chem Int Ed Engl 2021;60:11247-51.
143. Lyu P, Astam MO, Sánchez-somolinos C, Liu D. Robotic pick-and-place operations in multifunctional liquid crystal elastomers. Adv Intell Syst 2022;4:2200280.
144. Potekhina A, Wang C. Liquid crystal elastomer based thermal microactuators and photothermal microgrippers using lateral bending beams. Adv Mater Technol 2022;7:2101732.
145. Tian H, Liu H, Shao J, Li S, Li X, Chen X. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles. Soft Matter 2020;16:5599-608.
146. De Bellis I, Ni B, Martella D, et al. Color modulation in morpho butterfly wings using liquid crystalline elastomers. Adv Intell Syst 2020;2:2000035.
147. Shi Y, Zhu C, Li J, Wei J, Guo J. A color-changing plasmonic actuator based on silver nanoparticle array/liquid crystalline elastomer nanocomposites. New J Chem 2016;40:7311-9.
148. Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. Light Sci Appl 2022;11:248.
149. Liu Z, Bisoyi HK, Huang Y, Wang M, Yang H, Li Q. Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew Chem Int Ed Engl 2022;61:e202115755.
150. Joralmon D, Alfarhan S, Kim S, Tang T, Jin K, Li X. Three-dimensional printing of liquid crystals with thermal sensing capability via multimaterial vat photopolymerization. ACS Appl Polym Mater 2022;4:2951-9.
151. Wei W, Gao J, Yang J, Wei J, Guo J. A NIR light-triggered pyroelectric-dominated generator based on a liquid crystal elastomer composite actuator for photoelectric conversion and self-powered sensing. RSC Adv 2018;8:40856-65.
152. Liao W, Yang Z. The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots. Adv Mater Technol 2022;7:2101260.
153. Shaha RK, Merkel DR, Anderson MP, et al. Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J Mech Behav Biomed Mater 2020;107:103757.
154. Hussain S, Park SY. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS Appl Mater Interf 2021;13:59275-87.
155. Frenzel T, Köpfler J, Jung E, Kadic M, Wegener M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat Commun 2019;10:3384.
156. Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun 2020;11:1180.