REFERENCES
2. Su M, Song Y. Printable Smart materials and devices: strategies and applications. Chem Rev 2022;122:5144-64.
3. Xu F, Feringa BL. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv Mater 2023;35:e2204413.
4. Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021;50:8319-43.
6. Lu C, Huang Q, Chen X. High-performance silicon nanocomposite based ionic actuators. J Mater Chem A 2020;8:9228-38.
7. Mishra AK, Wallin TJ, Pan W, et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci Robot 2020;5:eaaz3918.
8. Tang Y, Li M, Wang T, Dong X, Hu W, Sitti M. Wireless miniature magnetic phase-change soft actuators. Adv Mater 2022;34:e2204185.
9. Xu C, Yang Z, Lum GZ. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv Mater 2021;33:e2100170.
10. Hu Y, Yang L, Yan Q, et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx mxene film driven by natural sunlight fluctuation. ACS Nano 2021;15:5294-306.
11. Hu Y, Ji Q, Huang M, et al. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew Chem Int Ed 2021;60:20511-7.
12. Xue B, Sheng H, Li Y, et al. Stretchable and self-healable hydrogel artificial skin. Natl Sci Rev 2022;9:nwab147.
13. Li X, Liu J, Li D, Huang S, Huang K, Zhang X. Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv Sci 2021;8:e2101295.
14. Piotrowska R, Hesketh T, Wang H, et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat Mater 2021;20:403-9.
15. Zhao Z, Hwang Y, Yang Y, et al. Actuation and locomotion driven by moisture in paper made with natural pollen. Proc Natl Acad Sci USA 2020;117:8711-8.
16. Shin B, Ha J, Lee M, et al. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci Robot 2018;3:eaar2629.
17. Dong Y, Wang L, Xia N, et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy 2021;88:106254.
18. Gu G, Zhang N, Xu H, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat Biomed Eng 2021; doi: 10.1038/s41551-021-00767-0.
19. Yao Y, Luo Y, Xu Y, et al. Fabrication and characterization of auxetic shape memory composite foams. Compos Part B Eng 2018;152:1-7.
20. Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench. Nature 2021;591:66-71.
21. Wang Y, Zhang Z, Chen H, Zhang H, Zhang H, Zhao Y. Bio-inspired shape-memory structural color hydrogel film. Sci Bull 2022;67:512-9.
22. Shi Y, Askounis E, Plamthottam R, et al. A processable, high-performance dielectric elastomer and multilayering process. Science 2022;377:228-32.
23. Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L. High-performance ionic-polymer-metal composite: toward large-deformation fast-response artificial muscles. Adv Funct Mater 2020;30:1908508.
24. Jo C, Pugal D, Oh I, Kim KJ, Asaka K. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci 2013;38:1037-66.
25. Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater Struct 1992;1:91-4.
26. Bhandari B, Lee G, Ahn S. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Manuf 2012;13:141-63.
27. He X, Fang X, Luo B, Liu H, Bian C, Zhu Z. Fundamentals and applications of ion migration induced polymer sensor detecting bending, pressure and shear force. IEEE Instrum Meas Mag 2019;22:13-23.
28. Wang J, Wang Y, Zhu Z, Wang J, He Q, Luo M. The effects of dimensions on the deformation sensing performance of ionic polymer-metal composites. Sensors 2019;19:2104.
29. Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 2011;20:083001.
30. Lee JH, Lee JH, Nam J, et al. Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sensor Actuat A Phys 2005;118:98-106.
31. Wang Y, Zhu Z, Chen H, et al. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater Struct 2014;23:125015.
32. Wang Y, Tang G, Zhao C, et al. Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception. Sensor Actuat B Chem 2021;345:130421.
33. Yılmaz OC, Sen I, Gurses BO, et al. The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators. Compos Part B Eng 2019;165:747-53.
34. Wang Y, Liu J, Zhu Y, Zhu D, Chen H. Formation and characterization of dendritic interfacial electrodes inside an ionomer. ACS Appl Mater Interfaces 2017;9:30258-62.
35. Wang Y, Wang J, Hao M, et al. Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv 2020;10:27447-55.
36. Wang Y, Zhang L, Li B, et al. Voltage-heating responsive and patternable solvatochromism display utilizing nickel complex-Nafion film composites. Adv Mech Eng 2022;14:168781322211164.
37. Hofmann DW, Kuleshova L, D’Aguanno B, et al. Investigation of water structure in nafion membranes by infrared spectroscopy and molecular dynamics simulation. J Phys Chem B 2009;113:632-9.
38. Zhu Z, Horiuchi T, Kruusamäe K, Chang L, Asaka K. The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations. Smart Mater Struct 2016;25:055024.
39. Zhu Z, Horiuchi T, Takagi K, Takeda J, Chang L, Asaka K. Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities. J Appl Phys 2016;120:084906.
40. Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 2008;7:75-83.
41. Nemat-nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J Appl Phys 2003;93:5255-67.
42. Lee J, Yoo Y. Anion effects in imidazolium ionic liquids on the performance of IPMCs. Sensor Actuat B Chem 2009;137:539-46.
43. Bar-Cohen Y. Electroactive Polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. 2001. Available from: https://spie.org/publications/book/547465?SSO=1 [Last accessed on 16 March 2022].
44. Wang HS, Cho J, Park HW, Jho JY, Park JH. Ionic polymer-metal composite actuators driven by methylammonium formate for high-voltage and long-term operation. J Ind Eng Chem 2021;96:194-201.
45. Wang J, Xu C, Taya M, Kuga Y. A Flemion-based actuator with ionic liquid as solvent. Smart Mater Struct 2007;16:S214-9.
46. Safari M, Naji L, Baker RT, Taromi FA. The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators. Polymer 2015;76:140-9.
47. Zhu Z, Chang L, Asaka K, et al. Comparative experimental investigation on the actuation mechanisms of ionic polymer-metal composites with different backbones and water contents. J Appl Phys 2014;115:124903.
48. Sunda AP, Venkatnathan A. Atomistic simulations of structure and dynamics of hydrated Aciplex polymer electrolyte membrane. Soft Matter 2012;8:10827.
49. Tamagawa H, Goto S, Sugiyama T. Bending direction of Ag-plated IPMC containing immobile anions and/or cations. Compos Sci Technol 2008;68:3412-7.
50. Lee J, Yu S, Hong SM, Koo CM. High-strain air-working soft transducers produced from nanostructured block copolymer ionomer/silicate/ionic liquid nanocomposite membranes. J Mater Chem C 2013;1:3784.
51. Lee J, Kwon T, Kang Y, et al. Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos Sci Technol 2018;163:63-70.
52. Khan A, Jain RK, Naushad M. Development of sulfonated poly(vinyl alcohol)/polpyrrole based ionic polymer metal composite (IPMC) actuator and its characterization. Smart Mater Struct 2015;24:095003.
53. Khan A, Inamuddin, Jain RK. Easy, operable ionic polymer metal composite actuator based on a platinum-coated sulfonated poly(vinyl alcohol)-polyaniline composite membrane. J Appl Polym Sci 2016:133.
54. Luqman M, Shaikh H, Anis A, Al-Zahrani SM, Hamidi A, Inamuddin. platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybrid ionic polymer metal composite membrane for bending actuation applications. Sci Rep 2022;12:4467.
55. Mehraeen S, Sadeghi S, Cebeci FÇ, Papila M, Alkan Gürsel S. Polyvinylidene fluoride grafted poly(styrene sulfonic acid) as ionic polymer-metal composite actuator. Sensor Actuat A Phys 2018;279:157-67.
56. Guo D, Han Y, Huang J, et al. Hydrophilic poly(vinylidene fluoride) film with enhanced inner channels for both water- and ionic liquid-driven ion-exchange polymer metal composite actuators. ACS Appl Mater Interfaces 2019;11:2386-97.
57. Xue Z, Tang Y, Duan X, Ye Y, Xie X, Zhou X. Ionic polymer-metal composite actuators obtained from sulfonated poly(ether ether sulfone) ion-exchange membranes. Compos Part A Appl Sci 2016;81:13-21.
58. Guo D, Liu R, Li Y, et al. Polymer actuators of fluorene derivatives with enhanced inner channels and mechanical performance. Sensor Actuat B Chem 2018;255:791-9.
59. Khan A, Inamuddin, Jain RK, Asiri AM. Thorium (IV) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application. Polym Eng Sci 2017;57:258-67.
60. Tas S, Zoetebier B, Sukas OS, et al. Ion-selective ionic polymer metal composite (IPMC) actuator based on crown ether containing sulfonated poly(arylene ether ketone). Macromol Mater Eng 2017;302:1600381.
61. Luqman M, Shaikh HM, Anis A, Al-Zahrani SM, Alam MA. A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly(ether ether ketone)-polyaniline composite membrane. Polymers 2022;14:668.
62. Luqman M, Anis A, Shaikh HM, Al-Zahrani SM, Alam MA. Development of a soft robotic bending actuator based on a novel sulfonated polyvinyl chloride-phosphotungstic acid ionic polymer-metal composite (IPMC) membrane. Membranes 2022;12:651.
63. Luqman M, Anis A, Shaikh HM, Al-zahrani SM, Alam MA. Synthesis, Characterization and fabrication of copper nanoparticles embedded non-perfluorintaed kraton based ionic polymer metal composite (IPMC) actuator. Actuators 2022;11:183.
64. Lee J, Hong SM, Kim J, Koo CM. Novel sulfonated styrenic pentablock copolymer/silicate nanocomposite membranes with controlled ion channels and their IPMC transducers. Sensor Actuat B Chem 2012;162:369-76.
65. He C, Gu Y, Zhang J, et al. Preparation and modification technology analysis of ionic polymer-metal composites (IPMCs). Int J Mol Sci 2022;23:3522.
66. Gudarzi M, Smolinski P, Wang Q. Fabrication and transient responses of highly flexible and humidity-insensitive ionic polymer-metal composites in different sensory modes. J Intell Mater Syst Struct 2019;30:1653-66.
67. Fu R, Yang Y, Lu C, et al. Large-Scale fabrication of high-performance ionic polymer-metal composite flexible sensors by in situ plasma etching and magnetron sputtering. ACS Omega 2018;3:9146-54.
68. Esmaeli E, Ganjian M, Rastegar H, Kolahdouz M, Kolahdouz Z, Zhang GQ. Humidity sensor based on the ionic polymer metal composite. Sensor Actuat B Chem 2017;247:498-504.
69. Mousavi MSS, Alaei A, Hasani M, Kolahdouz M, Manteghi F, Ataei F. Fabrication of ionic polymer metal composite for bio-actuation application: sputtering and electroless plating methods. Mater Res Express 2019;6:035312.
70. Kodaira A, Asaka K, Horiuchi T, Endo G, Nabae H, Suzumori K. IPMC monolithic thin film robots fabricated through a multi-layer casting process. IEEE Robot Autom Lett 2019;4:1335-42.
71. Chung C, Fung P, Hong Y, Ju M, Lin C, Wu T. A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sensor Actuat B Chem 2006;117:367-75.
72. Khan A, Inamuddin, Jain RK, Naushad M. Fabrication of a silver nano powder embedded kraton polymer actuator and its characterization. RSC Adv 2015;5:91564-73.
73. Zhao C, Wang Y, Tang G, et al. Biological hair-inspired AgNWs@Au-Embedded nafion electrodes with high stability for self-powered ionic flexible sensors. ACS Appl Mater Interfaces 2022;14:46023-31.
74. Shahinpoor M, Kim KJ. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensor Actuat A Phys 2002;96:125-32.
75. Li J, Ma W, Song L, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 2011;11:4636-41.
76. Ru J, Bian C, Zhu Z, et al. Controllable and durable ionic electroactive polymer actuator based on nanoporous carbon nanotube film electrode. Smart Mater Struct 2019;28:085032.
77. Akle BJ, Bennett MD, Leo DJ, Wiles KB, Mcgrath JE. Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. J Mater Sci 2007;42:7031-41.
78. Palmre V, Brandell D, Mäeorg U, et al. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater Struct 2009;18:095028.
79. Zhu Z, He X, He Q, Fang X, Hu Q, Chen H. Ionic polymer pressure sensor with gradient shape based on ion migration. J Appl Phys 2019;125:024901.
80. Takenaka H, Torikai E, Kawami Y, Wakabayashi N. Solid polymer electrolyte water electrolysis. Int J Hydrog Energy 1982;7:397-403.
81. Millet P, Andolfatto F, Durand R. Preparation of solid polymer electrolyte composites: investigation of the precipitation process. J Appl Electrochem 1995:25.
82. Byun JM, Hwang T, Kim KJ. Formation of a gold nanoparticle layer for the electrodes of ionic polymer-metal composites by electroless deposition process. Appl Surf Sci 2019;470:8-12.
83. Yang L, Zhang D, Zhang X, Tian A. Electroless copper deposition and interface characteristics of ionic electroactive polymer. J Mater Res Technol 2021;11:849-56.
84. Chung RJ, Chin TS, Chen LC, Hsieh MF. Preparation of gradually componential metal electrode on solution-casted Nafion membrane. Biomol Eng 2007;24:434-7.
85. Onishi K, Sewa S, Asaka K, Fujiwara N, Oguro K. Morphology of electrodes and bending response of the polymer electrolyte actuator. Electrochim Acta 2001;46:737-43.
86. Chang L, Chen H, Zhu Z, Li B. Manufacturing process and electrode properties of palladium-electroded ionic polymer-metal composite. Smart Mater Struct 2012;21:065018.
87. Kim KJ, Shahinpoor M. Ionic polymer metal composites: II. manufacturing techniques. Smart Mater Struct 2003;12:65-79.
88. Jung K, Nam J, Choi H. Investigations on actuation characteristics of IPMC artificial muscle actuator. Sensor Actuat A Phys 2003;107:183-92.
89. Kobayashi T, Omiya M. Deformation behaviors of ionic-polymer-metal composite actuator with palladium electrodes for various solvents, temperatures, and frequencies. Smart Mater Struct 2012;21:105031.
90. Aureli M, Porfiri M. Effect of electrode surface roughness on the electrical impedance of ionic polymer-metal composites. Smart Mater Struct 2012;21:105030.
91. Jin N, Wang B, Bian K, Chen Q, Xiong K. Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods. Front Mech Eng China 2009;4:430-5.
92. Wang Y, Zhu Z, Liu J, Chang L, Chen H. Effects of surface roughening of nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators. Smart Mater Struct 2016;25:085012.
93. Liu Y, Chang L, Hu Y, et al. Rough interface in IPMC: modeling and its influence analysis. Smart Mater Struct 2018;27:075055.
94. Chang L, Asaka K, Zhu Z, Wang Y, Chen H, Li D. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite. J Appl Phys 2014;115:244901.
95. Shahinpoor M, Kim KJ. The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Mater Struct 2000;9:543-51.
96. Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators. Sensor Actuat A Phys 2007;133:200-9.
97. Zhu Z, Asaka K, Chang L, Takagi K, Chen H. Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 2013;114:184902.
98. Wang Y, Chen H, Wang Y, Zhu Z, Li D. Effect of dehydration on the mechanical and physicochemical properties of gold- and palladium -ionomeric polymer-metal composite (IPMC) actuators. Electrochim Acta 2014;129:450-8.
99. Ansaf B, Duong TH, Jaksic NI, et al. Influence of humidity and actuation time on electromechanical characteristics of ionic polymer-metal composite actuators. Procedia Manufacturing 2018;17:960-7.
100. M, Kim, KJ. Experimental study of ionic polymer-metal composites in various cation forms: actuation behavior. Sci Eng Compos Mater 2002;10:423-36.
101. Oh C, Kim S, Kim H, et al. Effects of membrane thickness on the performance of ionic polymer-metal composite actuators. RSC Adv 2019;9:14621-6.
102. Almomani A, Hong W, Hong W, Montazami R. Influence of temperature on the electromechanical properties of ionic liquid-doped ionic polymer-metal composite actuators. Polymers 2017;9:358.
103. Moeinkhah H, Jung J, Jeon J, et al. How does clamping pressure influence actuation performance of soft ionic polymer-metal composites? Smart Mater Struct 2013;22:025014.
104. Chang L, Yang Q, Niu Q, et al. High-performance ionic polymer-metal composite actuators fabricated with microneedle roughening. Smart Mater Struct 2019;28:015007.
105. Liang Y, Zhang H, Lin Z, Ma S, Ren L, Ren L. High specific surface area pd/pt electrode-based ionic polymer-metal composite for high-performance biomimetic actuation. ACS Sustain Chem Eng 2022;10:2645-52.
106. Jung SY, Park J, Park S. Replacement of surface roughening using polyvinyl alcohol coating in the fabrication of nafion-based ionic polymer metal composite (IPMC) actuators. J Polym Res 2016:23.
107. Ru J, Zhao D, Zhu Z, Wang Y. Fabrication and characterization of a novel smart-polymer actuator with nanodispersed CNT/Pd composite interfacial electrodes. Polymers 2022;14:3494.
108. Tian A, Sun Y, Li J, Zhang X, Feng B, Du H. Interface electrode and enhanced actuation performance of SiO2-GO/PFSA-based IPMC soft actuators. Smart Mater Struct 2022;31:035017.
109. Zhao D, Li D, Wang Y, Chen H. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators. Smart Mater Struct 2016;25:075043.
110. Lee KS, Jeon BJ, Cha SW. Performance enhancement of an ionic polymer metal composite actuator using a microcellular foaming process. Smart Mater Struct 2010;19:065029.
111. Zhao D, Ru J, Wang T, Wang Y, Chang L. Performance enhancement of ionic polymer-metal composite actuators with polyethylene oxide. Polymers 2021;14:80.
112. Naji L, Safari M, Moaven S. Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance. Carbon 2016;100:243-57.
113. Bian K, Liu H, Tai G, Zhu K, Xiong K. Enhanced actuation response of nafion-based ionic polymer metal composites by doping BaTiO3 nanoparticles. J Phys Chem C 2016;120:12377-84.
114. Zhang M, Wang M, Zhang X, Zhang C, Li M, Yu S. Fabrication of a multilayered SGO/macroporous Nafion-based IPMC with enhanced actuation performance. Sensor Actuat B Chem 2022;356:131319.
115. Zhang X, Yu S, Li M, Zhang M, Zhang C, Wang M. Enhanced performance of IPMC actuator based on macroporous multilayer MCNTs/Nafion polymer. Sensor Actuat A Phys 2022;339:113489.
116. Guo D, Wang L, Wang X, et al. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator. Sensor Actuat B Chem 2020;305:127488.
117. Lei H, Li W, Tan X. Encapsulation of ionic polymer-metal composite (IPMC) sensors with thick parylene: Fabrication process and characterization results. Sensor Actuat A Phys 2014;217:1-12.
118. Peng W, Zhang Y, Gao J, Wang Y, Chen Y, Zhou Y. Fabrication and performance of ionic polymer-metal composites for biomimetic applications. Sensor Actuat A Phys 2019;299:111613.
119. Wang F, Zhang X, Ma L, et al. Facile and effective repair of Pt/Nafion IPMC actuator by dip-coating of PVP@AgNPs. Nanotechnology 2021;32:385502.
120. He Z, Jiao S, Wang Z, et al. An antifatigue liquid metal composite electrode ionic polymer-metal composite artificial muscle with excellent electromechanical properties. ACS Appl Mater Interfaces 2022;14:14630-9.
121. Park JH, Lee SW, Song DS, Jho JY. Highly enhanced force generation of ionic polymer-metal composite actuators via thickness manipulation. ACS Appl Mater Interfaces 2015;7:16659-67.
122. Wang HS, Cho J, Song DS, Jang JH, Jho JY, Park JH. High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes. ACS Appl Mater Interfaces 2017;9:21998-2005.
123. Swarrup J, Ganguli R, Madras G. Studies to improve the actuation capability of low-frequency IPMC actuators for underwater robotic applications. ISSS J Micro Smart Syst 2019;8:41-7.
124. Bian C, Zhu Z, Bai W, Chen H. Highly efficient structure design of bending stacking actuators based on IPMC with large output force. Smart Mater Struct 2021;30:075033.
125. Lee JW, Yoo YT, Lee JY. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers. ACS Appl Mater Interfaces 2014;6:1266-71.
126. Boldini A, Jose K, Cha Y, Porfiri M. Enhancing the deformation range of ionic polymer metal composites through electrostatic actuation. Appl Phys Lett 2018;112:261903.
127. Ru J, Zhu Z, Wang Y, et al. A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior. Smart Mater Struct 2018;27:02LT01.
128. Lu C, Zhao L, Hu Y, Chen W. A molecular-regulation strategy towards low-voltage driven, multi degree of freedom IPMC catheters. Chem Commun 2018;54:8733-6.
129. Xu B, Wang S, Zhang Z, Ling J, Wu X. Improving the torsion performance of IPMC by changing the electrode separation. Sci Rep 2021;11:7639.
130. Song DS, Han DG, Rhee K, Kim DM, Jho JY. Fabrication and characterization of an ionic polymer-metal composite bending sensor. Macromol Res 2017;25:1205-11.
131. Dominik I, Kwaśniewski J, Kaszuba F. Ionic polymer-metal composite displacement sensors. Sensor Actuat A Phys 2016;240:10-6.
132. Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S. Characterization of the temperature and humidity influence on ionic polymer-metal composites as sensors. IEEE Trans Instrum Meas 2011;60:2951-9.
133. Zhu Z, Horiuchi T, Kruusamäe K, Chang L, Asaka K. Influence of ambient humidity on the voltage response of ionic polymer-metal composite sensor. J Phys Chem B 2016;120:3215-25.
134. Gudarzi M, Smolinski P, Wang Q. Bending mode ionic polymer-metal composite (IPMC) pressure sensors. Measurement 2017;103:250-7.
135. Gudarzi M, Smolinski P and Wang Q. Compression and shear mode ionic polymer-metal composite (IPMC) pressure sensors. Sensor Actuat A Phys 2017;260:99-111.
136. Wang Y, Tang G, Zhao C, et al. The effects of contact area on pressure sensing of ionic polymer metal composite sensor with a soft substrate. Smart Mater Struct 2022;31:065013.
137. Beigi F, Mousavi MSS, Manteghi F, Kolahdouz M. Doped nafion-layered double hydroxide nanoparticles as a modified ionic polymer metal composite sheet for a high-responsive humidity sensor. Appl Clay Sci 2018;166:131-6.
138. Palmre V, Kim SJ, Pugal D, Kim K. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness. Int J Smart Nano Mat 2014;5:99-113.
139. Hong W, Almomani A, Montazami R. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors. Measurement 2017;95:128-34.
140. Chang L, Wang D, Hu J, Li Y, Wang Y, Hu Y. Hierarchical structure fabrication of ipmc strain sensor with high sensitivity. Front Mater 2021;8:748687.
141. He Q, Vokoun D, Stalbaum T, et al. Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte. Sensor Actuat A Phys 2019;286:68-77.
142. Panwar V, Panwar LS, Anoop G, Park S. Electronic-ionic polymer composite for high output voltage generation. Compos Part B Eng 2022;232:109601.
143. Qaviandam Z, Naghavi N, Safaie J. A New Approach to improve IPMC performance for sensing dynamic deflection: sensor biasing. IEEE Sensors J 2020;20:8614-22.
144. Tang G, Wang Y, Hao M, et al. A novel strategy to enhance the generating power of ionic polymer metal composites through magnetoelectricity. Smart Mater Struct 2021;30:065013.
145. Histed R, Ngo J, Hussain OA, et al. Ionic polymer metal composite compression sensors with 3D-structured interfaces. Smart Mater Struct 2021;30:125027.
146. Yi X, Chakarvarthy A, Chen Z. Cooperative Collision Avoidance Control of servo/IPMC driven robotic fish with back-relaxation effect. IEEE Robot Autom Lett 2021;6:1816-23.
147. Sunkara V, Chakravarthy A, Yi X, Zuo W, Chen Z. Cooperative optimal collision avoidance laws for a hybrid-tailed robotic fish. IEEE Trans Contr Syst Technol 2020;28:1569-78.
148. Shen Q, Olsen Z, Stalbaum T, et al. Basic design of a biomimetic underwater soft robot with switchable swimming modes and programmable artificial muscles. Smart Mater Struct 2020;29:035038.
149. Li H, Fan M, Yue Y, Hu G, He Q, Yu M. Motion control of capsule-like underwater robot utilizing the swing properties of ionic polymer metal composite actuators. J Bionic Eng 2020;17:281-9.
150. Wang S, Chen Z. Modeling of two-dimensionally maneuverable jellyfish-inspired robot enabled by multiple soft actuators. IEEE/ASME Trans Mechatron 2022;27:1998-2006.
151. Sun Q, Han J, Li H, et al. A miniature robotic turtle with target tracking and wireless charging systems based on IPMCs. IEEE Access 2020;8:187156-64.
152. Nguyen KT, Ko SY, Park J, Park S. Terrestrial walking robot with 2DoF ionic polymer-metal composite (IPMC) legs. IEEE/ASME Trans Mechatron 2015;20:2962-72.
153. Li J, Tian A, Sun Y, Feng B, Wang H, Zhang X. The development of a venus flytrap inspired soft robot driven by IPMC. J Bionic Eng 2023;20:406-15.
154. Guo DJ, Liu R, Cheng Y, et al. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator. ACS Appl Mater Interfaces 2015;7:5480-7.
155. Ishiki A, Nabae H, Kodaira A, Suzumori K. PF-IPMC: paper/fabric assisted IPMC actuators for 3D crafts. IEEE Robot Autom Lett 2020;5:4035-41.
156. Ford S, Macias G, Lumia R. Single active finger IPMC microgripper. Smart Mater Struct 2015;24:025015.
157. Jain R, Datta S, Majumder S. Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics 2013;23:381-94.
158. Jain RK, Datta S, Majumder S. Biomimetic behavior of IPMC using EMG signal for micro robot. Mech Based Des Struct 2014;42:398-417.
159. Gonzalez C, Lumia R. An IPMC microgripper with integrated actuator and sensing for constant finger-tip displacement. Smart Mater Struct 2015;24:055011.
160. Cheong HR, Teo CY, Leow PL, Lai KC, Chee PS. Wireless-powered electroactive soft microgripper. Smart Mater Struct 2018;27:055014.
161. Jain RK, Khan A, Inamuddin, Asiri AM. Design and development of non-perfluorinated ionic polymer metal composite-based flexible link manipulator for robotics assembly. Polym Compos 2019;40:2582-93.
162. Jain RK, Datta S, Majumder S, Dutta A. Two IPMC fingers based micro gripper for handling. Int J Adv Robot Syst 2011;8:13.
163. Abbas Kashmery H. Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Sci Rep 2019;9:9877.
164. Yang D, Kong X, Ni Y, et al. Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator. Nano Energy 2019;66:104139.
165. Chattaraj R, Khan S, Bhattacharya S, Bepari B, Chatterjee D, Bhaumik S. Development of two jaw compliant gripper based on hyper-redundant approximation of IPMC actuators. Sensor Actuat A Phys 2016;251:207-18.
166. Feng G, Chen R. Fabrication and characterization of arbitrary shaped μIPMC transducers for accurately controlled biomedical applications. Sensor Actuat A Phys 2008;143:34-40.
167. Aw K, Fu L, Mcdaid A. An IPMC actuated robotic surgery end effector with force sensing. Int J Smart Nano Mat 2013;4:246-56.
168. Mcdaid A, Xie S, Aw K. A compliant surgical robotic instrument with integrated IPMC sensing and actuation. Int J Smart Nano Mat 2012;3:188-203.
169. Ruiz S, Mead B, Palmre V, Kim KJ, Yim W. A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control. Smart Mater Struct 2015;24:015007.
170. He Q, Huo K, Xu X, Yue Y, Yin G, Yu M. The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device. Int J Smart Nano Mat 2020;11:159-72.
171. Wang Y, Liu J, Zhu D, Chen H. Active tube-shaped actuator with embedded square rod-shaped ionic polymer-metal composites for robotic-assisted manipulation. Appl Bionics Biomech 2018;2018:4031705.
172. Yoon WJ, Reinhall PG, Seibel EJ. Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensor Actuat A Phys 2007;133:506-17.
173. Feng GH, Tsai JW. Micromachined optical fiber enclosed 4-electrode IPMC actuator with multidirectional control ability for biomedical application. Biomed Microdevices 2011;13:169-77.
174. Nam DNC, Ahn KK. Design of an IPMC diaphragm for micropump application. Sensor Actuat A Phys 2012;187:174-82.
175. Nguyen TT, Goo NS, Nguyen VK, Yoo Y, Park S. Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sensor Actuat A Phys 2008;141:640-8.
176. Santos J, Lopes B, Branco PC. Ionic polymer-metal composite material as a diaphragm for micropump devices. Sensor Actuat A Phys 2010;161:225-33.
177. Wang J, Mcdaid AJ, Lu CZ, Aw KC. A compact ionic polymer-metal composite (IPMC) actuated valveless pump for drug delivery. IEEE/ASME Trans Mechatron 2017;22:196-205.
178. Wang Y, Zhao C, Wang J, et al. Design and fabrication of an IPMC actuated micro-pump with inner petal-shaped diaphragm. In 3rd International Conference on Advanced Robotics and Mechatronics (ICARM) 2018. pp. 667-72. Available from: https://ieeexplore.ieee.org/document/8610829 [Last accessed on 16 March 2022].
179. Sideris EA, de Lange HC, Hunt A. An ionic polymer metal composite (IPMC)-driven linear peristaltic microfluidic pump. IEEE Robot Autom Lett 2020;5:6788-95.
180. Cheong HR, Nguyen NT, Khaw MK, Teoh BY, Chee PS. Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery. Lab Chip 2018;18:3207-15.
181. Horiuchi T, Mihashi T, Fujikado T, Oshika T, Asaka K. Voltage-controlled accommodating IOL system using an ion polymer metal composite actuator. Opt Express 2016;24:23280-8.
182. Feng G, Hou S. Investigation of tactile bump array actuated with ionic polymer-metal composite cantilever beams for refreshable braille display application. Sensor Actuat A Phys 2018;275:137-47.
183. Lee JH, Chee PS, Lim EH, Tan CH. Artificial intelligence-assisted throat sensor using ionic polymer-metal composite (IPMC) material. Polymers 2021;13:3041.
184. Chattaraj R, Bhaumik S, Khan S, Chatterjee D. Soft wearable ionic polymer sensors for palpatory pulse-rate extraction. Sensor Actuat A Phys 2018;270:65-71.
185. Annabestani M, Esmaeili-dokht P, Nejad SK, Fardmanesh M. NAFAS: non-rigid air flow active sensor, a cost-effective, wearable, and ubiquitous respiratory bio-sensor. IEEE Sensors J 2021;21:9530-7.
186. Ming Y, Yang Y, Fu RP, et al. IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human-computer interaction. Adv Mater Technol 2018;3:1800257.
187. Bonomo C, Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S. A tactile sensor for biomedical applications based on IPMCs. IEEE Sensors J 2008;8:1486-93.
188. Brunetto P, Fortuna L, Giannone P, Graziani S, Pagano F. A resonant vibrating tactile probe for biomedical applications based on IPMC. IEEE Trans Instrum Meas 2010;59:1453-62.
189. Sharif MA, Tan X. A pressure difference sensor inspired by fish canal lateral line. Bioinspir Biomim 2019;14:055003.
190. Jiang Y, Gong Z, Yang Z, et al. Underwater source localization using an artificial lateral line system with pressure and flow velocity sensor fusion. IEEE/ASME Trans Mechatron 2022;27:245-55.
191. Shen Q, Wang T, Kim KJ. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors. Bioinspir Biomim 2015;10:055007.
192. Pasquale GD, Graziani S, Pollicino A, Strazzeri S. A vortex-shedding flowmeter based on IPMCs. Smart Mater Struct 2016;25:015011.
193. Cha Y, Verotti M, Walcott H, Peterson SD, Porfiri M. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites. Bioinspir Biomim 2013;8:036003.
194. Cellini F, Pounds J, Peterson SD, Porfiri M. Underwater energy harvesting from a turbine hosting ionic polymer metal composites. Smart Mater Struct 2014;23:085023.
195. Patel SN, Mukherjee S. Manufacturing, characterization and experimental investigation of the IPMC shoe energy harvester. J Braz Soc Mech Sci Eng 2022:44.
196. Vinh ND, Kim H. Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer-metal composites. Electrochem Commun 2017;75:64-8.