REFERENCES

1. Zhang Y, Li J. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J Mater Chem C 2019;7:4284-303.

2. Mokhtari F, Latifi M, Shamshirsaz M. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. J Text Inst 2016;107:1037.

3. Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 1998;61:1267-324.

4. Newnham R, Skinner D, Cross L. Connectivity and piezoelectric-pyroelectric composites. Mat Res Bull 1978;13:525-36.

5. Chandra P, Littlewood PB. A landau primer for ferroelectrics. Physics of ferroelectrics. Berlin: Springer Berlin Heidelberg; 2007. pp. 69-116.

6. Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022;51:3380-435.

7. Tian G, Deng W, Yang T, et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023;19:e2207947.

8. Yousry YM, Yao K, Mohamed AM, Liew WH, Chen S, Ramakrishna S. Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv Funct Mater 2020;30:1910592.

9. Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115:2559-95.

10. Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl Phys Lett 2007;91:202907.

11. Aksel E, Jones JL. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 2010;10:1935-54.

12. Lv X, Wu J, Zhu J, Xiao D, Zhang X. A new method to improve the electrical properties of KNN-based ceramics: Tailoring phase fraction. J Eur Ceram Soc 2018;38:85-94.

13. Kong Z, Bai W, Zheng P, et al. Enhanced electromechanical properties of CaZrO3-modified (K0.5Na0.5)NbO3-based lead-free ceramics. Ceram Int 2017;43:7237-42.

14. Lei C, Ye Z. Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appl Phys Lett 2008;93:042901.

15. Huan Y, Zhang X, Song J, et al. High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure. Nano Energy 2018;50:62-9.

16. Lee S, Baek S, Kim H, et al. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents. Electron Mater Lett 2012;8:577-80.

17. Wu J, Xiao D, Wang Y, Zhu J, Yu P. Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1-x)NbO3−0.05LiSbO3 lead-free ceramics. J Appl Phys 2008;103:024102.

18. Zhao Y, Huang R, Liu R, Wang X, Zhou H. Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na,K)NbO3 ceramics by optimizing sintering temperature. Ceram Int 2013;39:425-9.

19. Zuo R, Fu J, Lv D, Liu Y. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate: antimony tuned rhombohedral-orthorhombic phase transition. J Am Ceram Soc 2010;93:2783-7.

20. Chang Y, Yang Z, Ma D, Liu Z, Wang Z. Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04] NbO3 lead-free piezoelectric ceramics. J Appl Phys 2008;104:024109.

21. Fu J, Zuo R, Xu Z. High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains. Appl Phys Lett 2011;99:062901.

22. Wu J, Wang X, Cheng X, et al. New potassium-sodium niobate lead-free piezoceramic: giant-d33 vs. sintering temperature. J Appl Phys 2014;115:114104.

23. Zheng T, Wu J, Xiao D, Zhu J. Giant d33 in nonstoichiometric (K,Na)NbO3 -based lead-free ceramics. Scripta Materialia 2015;94:25-7.

24. Zhang B, Wu J, Cheng X, et al. Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interf 2013;5:7718-25.

25. Jiang L, Li Y, Xing J, et al. Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics. Ceram Int 2017;43:2100-6.

26. Zheng T, Wu J, Xiao D, Zhu J, Wang X, Lou X. Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics. ACS Appl Mater Interf 2015;7:20332-41.

27. Pi Z, Zhang J, Wen C, Zhang Z, Wu D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 2014;7:33-41.

28. Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A 2017;5:3091-128.

29. Liu Y, Wang Q. Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects. Adv Sci 2020;7:1902468.

30. Soulestin T, Ladmiral V, Dos Santos FD, Améduri B. Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Prog Polym Sci 2017;72:16-60.

31. Wegener M, Wirges W, Gerhard-multhaupt R. Piezoelectric polyethylene terephthalate (PETP) foams - specifically designed and prepared ferroelectret films. Adv Eng Mater 2005;7:1128-31.

32. Zhang Z, Litt MH, Zhu L. Unified understanding of ferroelectricity in n-nylons: is the polar crystalline structure a prerequisite? Macromolecules 2016;49:3070-82.

33. Novikov GK, Smirnov AI. Electret effect in polyolefins joined by x-ray radiation of an electric gas barrier discharge. Russ Phys J 2011;53:1113-7.

34. Ribeiro C, Costa CM, Correia DM, et al. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 2018;13:681-704.

35. Li Z, Wang Y, Cheng Z. Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl Phys Lett 2006;88:062904.

36. Koyama D, Nakamura K. Electric power generation using vibration of a polyurea piezoelectric thin film. Appl Acoust 2010;71:439-45.

37. David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Use of iodocompounds in radical polymerization. Chem Rev 2006;106:3936-62.

38. Liu Y, Aziguli H, Zhang B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018;562:96-100.

39. Yu YJ, McGaughey AJ. Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. J Chem Phys 2016;144:014901.

40. Lu Y, Claude J, Zhang Q, Wang Q. Microstructures and dielectric properties of the ferroelectric fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s. Macromolecules 2006;39:6962-8.

41. Han Z, Liu Y, Chen X, Xu W, Wang Q. Enhanced piezoelectricity in poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymers with mixed ferroelectric phases. Macromolecules 2022;55:2703-13.

42. Liu F, Hashim NA, Liu Y, Abed MM, Li K. Progress in the production and modification of PVDF membranes. J Membr Sci 2011;375:1-27.

43. Lin J, Malakooti MH, Sodano HA. Thermally stable poly(vinylidene fluoride) for high-performance printable piezoelectric devices. ACS Appl Mater Interf 2020;12:21871-82.

44. Wang Y, Wang H, Liu K, Wang T, Yuan C, Yang H. Effect of dehydrofluorination reaction on structure and properties of PVDF electrospun fibers. RSC Adv 2021;11:30734-43.

45. Liang T, Zha J, Wang D, Hu P, Dang Z. Dielectric properties of chemical dehydrofluorinated poly(vinylidene fluoride). J Adv Phys 2015;4:380-3.

46. Chen X, Qin H, Qian X, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 2022;375:1418-22.

47. Skinner D, Newnham R, Cross L. Flexible composite transducers. Mat Res Bull 1978;13:599-607.

48. Yang Y, Chen Z, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 2017;29:1605750.

49. Jo W, Dittmer R, Acosta M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 2012;29:71-93.

50. Tian G, Deng W, Xiong D, et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci 2022;3:100814.

51. Kaczmarek H, Królikowski B, Klimiec E, Chylińska M, Bajer D. Advances in the study of piezoelectric polymers. Russ Chem Rev 2019;88:749-74.

52. Xie L, Wang G, Jiang C, Yu F, Zhao X. Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials. Crystals 2021;11:644.

53. Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv Funct Mater 2021;31:2102983.

54. Wang Z, Cheng J, Hu R, et al. An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion. J Mater Chem A 2021;9:26767-76.

55. Bairagi S, Ali SW. Effects of surface modification on electrical properties of KNN nanorod-incorporated PVDF composites. J Mater Sci 2019;54:11462-84.

56. Bairagi S, Ali SW. Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: significant enhancement of energy harvesting efficiency of the nanogenerator. Energy 2020;198:117385.

57. Su YP, Sim LN, Coster HG, Chong TH. Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane. J Membr Sci 2021;640:119861.

58. Cui H, Hensleigh R, Yao D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat Mater 2019;18:234-41.

59. Wu J, Ma W, Chi M, Wang S, Zhang P. Effect of surface modification of ferroelectric ceramic component on the properties of PZT-type/epoxy piezoelectric composite with spiral structure. J Alloy Compd 2020;820:153362.

60. Li J, Zhao C, Xia K, Liu X, Li D, Han J. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification. Appl Surf Sci 2019;463:626-34.

61. Xing C, Zhao L, You J, Dong W, Cao X, Li Y. Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 2012;116:8312-20.

62. Mandal A, Nandi AK. Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. ACS Appl Mater Interf 2013;5:747-60.

63. Chen J, Li Y, Zheng X, He F, Lam K. Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites. Appl Surf Sci 2018;448:320-30.

64. Pongampai S, Charoonsuk T, Pinpru N, et al. Triboelectric-piezoelectric hybrid nanogenerator based on BaTiO3-nanorods/chitosan enhanced output performance with self-charge-pumping system. Compos Part B Eng 2021;208:108602.

65. Petroff CA, Cassone G, Šponer J, Hutchison GR. Intrinsically polar piezoelectric self-assembled oligopeptide monolayers. Adv Mater 2021;33:e2007486.

66. Huang X, Jiang P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 2015;27:546-54.

67. Ramasamy M, Rahaman A, Kim B. Effect of phenyl-isocyanate functionalized graphene oxide on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers. Ceram Int 2021;47:11010-21.

68. Begum S, Ullah H, Ahmed I, et al. Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs. Compos Sci Technol 2021;211:108841.

69. Park H, Zhao J, Lu JP. Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett 2006;6:916-9.

70. Punetha VD, Rana S, Yoo HJ, et al. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 2017;67:1-47.

71. Shi K, Chai B, Zou H, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 2021;80:105515.

72. Wang L, Cheng T, Lian W, et al. Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing. Carbohydr Polym 2022;275:118740.

73. Mahadeva SK, Walus K, Stoeber B. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interf 2014;6:7547-53.

74. Zhang G, Liao Q, Ma M, et al. Uniformly assembled vanadium doped ZnO microflowers/ bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2018;52:501-9.

75. Lee M, Chen CY, Wang S, et al. A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 2012;24:1759-64.

76. Hu P, Yan L, Zhao C, Zhang Y, Niu J. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos Sci Technol 2018;168:327-35.

77. Bairagi S, Ali SW. Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: influence of KNN concentration in the performance of nanogenerator. Org Electron 2020;78:105547.

78. Kang HB, Han CS, Pyun JC, Ryu WH, Kang C, Cho YS. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos Sci Technol 2015;111:1-8.

79. Chen H, Han S, Liu C, et al. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensor Actuat A-Phys 2016;245:135-9.

80. Nguyen VS, Rouxel D, Vincent B, et al. Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Appl Surf Sci 2013;279:204-11.

81. Huang L, Lu C, Wang F, Dong X. Piezoelectric property of PVDF/graphene composite films using 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane as a modifying agent. J Alloy Compd 2016;688:885-92.

82. Guan X, Xu B, Gong J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020;70:104516.

83. Yao D, Cui H, Hensleigh R, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv Funct Mater 2019;29:1903866.

84. Hong Y, Wang B, Lin W, et al. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv 2021:7.

85. Bowen CR, Kim HA, Weaver PM, Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 2014;7:25-44.

86. Yang Z, Zhou S, Zu J, Inman D. High-performance piezoelectric energy harvesters and their applications. Joule 2018;2:642-97.

87. Yang Z, Zu J. Toward harvesting vibration energy from multiple directions by a nonlinear compressive-mode piezoelectric transducer. IEEE/ASME Trans Mechatron 2016;21:1787-91.

88. Hong Y, Jin L, Wang B, et al. A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer. Energy Environ Sci 2021;14:6574-85.

89. Lee EJ, Kim TY, Kim S, Jeong S, Choi Y, Lee SY. High-performance piezoelectric nanogenerators based on chemically-reinforced composites. Energy Environ Sci 2018;11:1425-30.

90. Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 2014;23:033001.

91. Liu C, Djuth F, Li X, Chen R, Zhou Q, Shung KK. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array. Ultrasonics 2012;52:497-502.

92. Kim KB, Hsu DK, Ahn B, Kim YG, Barnard DJ. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications. Ultrasonics 2010;50:790-7.

93. Zhou Q, Lau S, Wu D, Shung KK. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog Mater Sci 2011;56:139-74.

94. Genchi GG, Ceseracciu L, Marino A, et al. P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv Healthc Mater 2016;5:1808-20.

95. Jiang L, Yang Y, Chen R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv Funct Mater 2019;29:1902522.

96. Ko W, Tseng C, Leu I, Wu W, Lee AS, Lee C. Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers. Smart Mater Struct 2010;19:055007.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/